УДК 678-19:678:678.664

Структура і властивості и фазовая структура

Термические характеристики и фазовая структура термостойких полиимид/полиуретановых пленочных материалов

О.П. Григорьева¹, А.М. Файнлейб¹, О.Н. Старостенко¹, Т.А. Шанталий¹, К.Г. Гусакова¹, В.В. Давиденко¹, Ј.М. Saiter², В. Youssef^{2,3}

¹Институт химии высокомолекулярных соединений НАН Украины 48, Харьковское шоссе, Киев, 02160, Украина ²AMME-LECAP International Lab EA 4528 Universite de Rouen 76801 St. Etienne du Rouvray, France ³INSA de Rouen, BP 08 Av. de l'Universite 76801, St. Etienne du Rouvray, France

> Синтезированы и исследованы новые термостойкие материалы на основе полиимида (ПИ) и линейного сегментированного полиуретана (ПУ). Пленочные образцы получены путем in situ имидизации полиамидокислоты (ПАК) в присутствии 5–95 % мас. ПУ. Методами Фурье ИКспектроскопии, ТГА и ДСК изучено влияние соотношения компонентов на химическую структуру, термические и теплофизические свойства полученных пленочных ПИ/ПУ материалов. Установлено неаддитивное изменение теплофизических характеристик и устойчивости образцов к термоокислительной деструкции при изменении соотношения компонентов. Методом ДСК обнаружено, что в процессе получения ПИ/ПУ материалов образуются микрообласти смешанных составов. Состав смешанных микрофаз рассчитан по уравнениям Fox и Couchman.

Ключевые слова: термостойкие полиимид/полиуретановые пленочные материалы, сегментированный полиуретан, термоокислительная деструкция, микрофазовая структура.

Введение.

Известно [1-12], что полиимиды (ПИ), полиамидоимиды (ПАИ) и полиуретанимиды (ПУИ) относятся к классу термостойких полимеров, имеющих высокую устойчивость к термической и термоокислительной деструкции (температура начала термодеструкции (Т) >400-450 °C). Поэтому изделия из них широко используются в качестве, например, термостойких пленочных мембран, способных эффективно разделять жидкости и газы в условиях повышенных температур. ПИ и ПАИ получают путем полициклоконденсации диангидридов карбоновых кислот и диаминов (в расплаве или растворе), синтез может быть одно- или двухстадийным. При двухстадийном методе синтеза сначала получают полиамидокислоту (ПАК), потом проводят ее имидизацию (при $T \approx 150-300$ °C), при этом основным химическим процессом является реакция внутрицепной полициклоконденсации по амидным и карбоксильным группам ПАК [2]. Одним из недостатков пленочных материалов на основе ПИ и ПАИ является их высокая плотность ($\rho \sim 1,35-1,48 \, \text{г/см}^3$), что существенно ограничивает области применения таких материалов, например при изготовлении фильтров, мембран и пр. [2]. Чтобы снизить плотность ПИ-материалов синтезируют ПИ-содержащие блок-сополимеры (например, ПУИ [4, 7–9, 11, 12]). Также можно получать смеси полимеров, при этом в ПИ-матрицу следует вводить полимеры, плотность которых ниже, чем у ПИ.

В качестве полимерного модификатора для ПИ представляет интерес использование сегментированных ПУ, которые имеют более низкую плотность ($ho_{_{\rm IIV}}\sim$ 1,15-1,22 г/см³) и характеризуются высокой эластичностью и ценным комплексом физико-химических свойств [13]. Известна работа [14], в которой поливом из раствора (растворитель – диметилформамид) были получены и исследованы пленочные материалы на основе ПИ (содержание ПИ варьировали от 1 до 10% мас.) и ПУ (полученного из полипропиленгликоля, дифенилметандиизоцианата и этилендиамина). Показано, что полученные ПУ/ПИ смеси характеризуются существенно улучшенным комплексом физико-механических свойств (например, на ~50 % повышались прочностные свойства). В работе [15] также поливом из раствора были получены пленочные образцы на основе

© 2015 О.П. Григорьева, А.М. Файнлейб, О.Н. Старостенко, Т.А. Шанталий, К.Г. Гусакова, В.В. Давиденко, J.M. Saiter, В. Youssef 11

Рис. 1. Структурные формулы индивидуальных компонентов: ПАК (*a*); ПУ (*б*)

ПАИ и ПУ (содержание ПУ было 5 – 50 % мас.). Показано, что полученные ПАИ/ПУ материалы обладают улучшенными физико-механическими и оптическими свойствами, и пригодны для использования в качестве оптических запоминающих устройств.

Целью данной работы было разработать способ получения термостойких ПИ/ПУ пленочных материалов путем *in situ* имидизации ПАК в присутствии линейного сегментированного ПУ и изучить влияние соотношения компонентов на химическую структуру, теплофизические и термические свойства ПИ/ПУ материалов.

Экспериментальная часть.

В данной работе в качестве исходных компонентов использовали: 1) полиамидокислоту, ПАК, полученную на основе диангидрида 4,4'-карбонилбис(1,2-бензолдикарбоновой кислоты) и 4,4'-метилендианилина (ПАК-ДКББ, Aldrich, ~18 %-ный раствор в N-метилпирролидоне, НМП), плотность $\rho_{\Pi II} \approx 1,322$ г/см³; 2) линейный сегментированный полиуретан, ПУ (марка "Витур Т-261", ТУ 6-05-221-806-85, Россия), полученный на основе 4,4'-дифенилметандиизоцианата (ДФМДИ) и олигобутиленгликольадипината (ОБГА, М ~ 1 000), молекулярная масса ПУ (М_{ПУ}) ~ 40 000, плотность ($\rho_{\Pi Y}$) $\approx 1,208$ г/см³. Структурные формулы ПАК и ПУ приведены на рис. 1а и б соответственно.

Синтез образцов ПИ/ПУ проводили следующим образом: смешивали растворы ПАК (~18 %-ный раствор в НМП) и ПУ (~20 %-ный раствор в НМП) при соотношении полимеров ПИ/ПУ = 95/5, 50/50 и 5/95 % мас.; затем полученную смесь выливали в форму, поверхность которой была покрыта антиадгезионной пленкой; имидизацию ПАК проводили путем ступенчатого

нагревания образцов при T = 80-200 °C, время синтеза 8 час. Пленочные образцы индивидуальных ПИ и ПУ получали по аналогичному температурному режиму. Схема реакции имидизации ПАК представлена на рис. 2.

Химическую структуру исследуемых образцов изучали с помощью метода ИК-спектроскопии, используя ИК-спектрометр "Bruker Tensor 27 DTGS" с Фурье преобразованием. Степень завершенности имидизации ПАК контролировали по исчезновению полос поглощения с максимумами при $v \sim 1660$ см⁻¹ и $v \sim 1536$ см⁻¹, которые относят, соответственно, к валентным колебаниям групп С=О (амид-I) и NH (амид-II) полиамидокислот [16].

Устойчивость образцов к термоокислительной деструкции определяли методом термогравиметрического анализа, ТГА, исследования проводили на оборудовании "TA Instruments TGA Q50" при скорости линейного нагрева 20 °С/мин в диапазоне $T \approx 30-800$ °С на воздухе.

Теплофизические свойства образцов изучали методом дифференциальной сканирующей калориметрии (ДСК) с использованием калориметра "ТА Instruments 2920 MDSC" в температурном интервале от -50 до +300 °С и скорости нагрева образцов 20 °С/мин. Был использован режим сканирования "нагреваниеохлаждение-нагревание". Середина эндотермического перехода на кривой температурной зависимости теплоемкости $C_{p} = f(T)$ соответствовала температуре стеклования (Т_) полимеров. Составы выделившихся микрофаз рассчитывали по известным уравнениям, предложенными Fox (уравнение (1)) и Couchman (уравнение (2)) [17–19], исходя из представления, что каждая микрофаза характеризуется собственной температурой стеклования и может рассматриваться как квазиравновесная система, компоненты которой находятся в состоянии вынужденной совместимости:

$$\frac{1}{T_{cm(cM)}} = \frac{w_1}{T_{cm1}} + \frac{w_2}{T_{cm2}},$$
 (1)

$$\ln T_{cm(cm)} = \frac{w_1 \Delta C_{p1} \ln T_{cm1} + w_2 \Delta C_{p2} \ln T_{cm2}}{w_1 \Delta C_{p1} + w_2 \Delta C_{p2}}, \quad (2)$$

где: $T_{cm(cm)}$ – температура стеклования смеси; w_1 и w_2 – массовые доли компонентов 1 и 2; T_{cm1} и T_{cm2} – их температуры стеклования; ΔC_{p1} и ΔC_{p2} – инкременты

Рис. 2. Схема реакции имидизации ПАК при получении ПИ

Рис. 3. ИК-спектры поглощения исходной ПАК (1) и синтезированного ПИ (2)

теплоемкости индивидуальных полимеров 1 и 2 соответственно.

Плотность (ρ) образцов определяли методом гидростатического взвешивания в изооктане при $T \approx 20$ °C по стандартной методике [20].

Результаты исследования и их обсуждение.

Методом ИК-спектроскопии изучена химическая структура исходной полиамидокислоты (ПАК) (рис. 3, спектр 1) и полученного после ее имидизации ПИ (рис. 3, спектр 2), основные полосы поглощения в ИК-спектрах и их отнесение сведены в табл. 1. Установлено, что в ИК-спектре синтезированного ПИ появляются характеристические полосы поглощения при $v \sim 1365$ см⁻¹ и $v \sim 1778$ см⁻¹, вызванные валентными колебаниями С–N–С и С=О-групп индивидуального ПИ, которые подтверждают факт протекания реакции имидизации ПАК, одновременно исчезают полосы

поглощения, характерные для индивидуальной ПАК. Так в спектре синтезированного ПИ появляется интенсивная полоса поглощения с максимумом при $v \sim 712$ см⁻¹ (рис. 3, спектр 2), которую относят к валентным колебаниям пятичленного имидного цикла в ПИ. Также в спектре исходной ПАК (рис. 3, спектр 1) присутствуют интенсивные полосы поглощения с максимумами *V* ~ 1533 см⁻¹ (δ_{NH} амид-II) и при $\nu \sim 1660$ см⁻¹ ($\nu_{C=0}$ амид-I), видно, что после имидизации ПАК полоса поглощения при $\delta \sim 1533$ см⁻¹, характеризующая деформационные колебания NH-групп ($\delta_{_{\rm NH}}$), практически исчезает, в спектре ПИ появляется полоса поглощения с максимумом при $v \sim 1672$ см⁻¹, которую относят к валентным колебаниям С=О-групп в ПИ [10, 16]. Обнаружено, что для исходной ПАК в области *v* ~ 3700–2700 см⁻¹ (рис. 3, спектр 1) наблюдается интенсивная и широкая полоса поглощения, которая является результатом суперпозиции ряда характеристических полос поглощения, которые соответствуют валентным колебаниям NH-групп ($v_{\rm NH} \sim 3700 - 3000 \, {\rm сM}^{-1}$) и OH-групп ($v_{\rm OH} \sim 3400 - 340$ 2700 см⁻¹). Установлено, что после проведения имидизации ПАК в ИК-спектре полученного ПИ в вышеуказанной области присутствуют полосы поглощения с максимумами при $\nu_{_{\rm NH}}\sim 3485~{\rm cm^{\text{-1}}}$ и $\nu_{_{\rm NH}}\sim 3060~{\rm cm^{\text{-1}}}$ (рис. 3, спектр 2), что свидетельствует о незавершенности процесса имидизации ПАК и связано с недостаточно высокой конечной температурой синтеза [16]. Этот вывод будет подтвержден ниже данными ТГА и ДСК.

Из анализа ИК-спектра индивидуального ПУ (рис. 4, кривая *1*) сделан вывод, что в данном ПУ сформирована развитая сетка водородных связей, поскольку практически все протонодонорные NH-группы и протоноакцепторные C=O-группы из уретановых группировок ПУ ассоциированы водородными связями, о чем свидетельствует наличие полос поглощения с максимумом при $v \sim 3339$ см⁻¹ (v_{NHacc}) и при $v \sim 1732$ см⁻¹(v_{COacc})

Рис. 4. ИК-спектры поглощения ПИ/ПУ композиций, содержащих: 0 (1); 5 (2); 50 (3); 95 (4) и 100 % мас. ПУ (5); *a* – полный диапазон, *б* – область 2700–3700 см⁻¹

Полосы поглощения с максимумом при v, см ⁻¹							
ПИ	ПУ	ПИ/ПУ					
		95/5	50/50	5/95	Отнесение полос поглощения		
3700-3180	3700-3150	3700-3140	3700-3150	3700-3150	v (NH)		
3170-3000	—	3140-3000	3100-3000	—	v (OH)		
2955, 2928, 2856	2950, 2876	2955, 2922, 2851	2955, 2926, 2865	2952, 2874	v (С–Н)		
1778	-	1776	1776	—	v (C=O) _{симммет} имид		
1713	1732, 1709	1713	1726, 1705	1726, 1707	v (C=O) _{ассоц.Н-связью}		
1672	_	1668	1654	—	v (C=O) амид-I		
1616	1599	1618–1599	1613–1595	1611–1597	Плоск. колебания (<i>ip</i>) С=С скелета бензольных колец		
1510	—	_	1516	1510	<i>v</i> (С ₆ Н ₄) бензольных колец		
-	1533	1529	1528	1537	δ (NH) амид-II		
1425	1412	1422	1414	1413	v (CH ₂) фрагмента диамина		
1365	-	1365	1368	1363	v (C–N–C) имид		
1088	-	1088	1088	_	v (CH) в бензольных кольцах фрагментов диамина		
_	1070	_	1068	1065	v (CH) в бензольных кольцах фрагмента ДФМДИ		
712	_	715	718	_	v (С–N–С) структуры пятичленного имидного цикла		

Таблица 1. Основные полосы поглощения и их отнесение в ИК-спектрах индивидуальных ПИ и ПУ, а также ПИ/ПУ пленочных материалов

соответственно [21]. Присутствие небольших по размеру самоассоциатов уретановых групп (димеры, тримеры) в ПУ подтверждается проявлением "плеча" (скрытый пик) при $v \sim 1709 \text{ см}^{-1} (v_{exc})$).

(скрытый пик) при v~1709 см⁻¹ (v_{СОасс-лим}). На рис. 4 приведены ИК-спектры ПИ/ПУ смесей состава 5/95, 50/50 и 95/5 % мас. (кривые 2–4 соответственно), также для сравнения приведен спектр индивидуального ПИ (кривая 5). Сопоставление ИК-спектров индивидуальных ПУ и ПИ со спектрами ПИ/ПУ смесей показало отсутствие новых характеристических полос поглощения, что свидетельствует об отсутствии химического взаимодействия между компонентами системы. Однако для всех исследованных ПИ/ПУ образцов зафиксировано перераспределение интенсивностей, уширение, а также частотный сдвиг большинства характеристических полос поглощения (рис. 4a, δ , кривые 2–4; табл. 1), которые относятся к валентным колебаниям групп С=О и NH из уретановых группировок ПУ, а также групп С=О полиимида и остаточных групп ОН из непрореагировавших фрагментов ПАК. Можно заключить, что в исследуемых образцах происходит перераспределение сетки физических связей

Рис. 5. Экспериментальные кривые ТГА (*a*) и соответствующие дифференциальные кривые (б) ПИ/ПУ композиций, содержащих: 0 (1); 5 (2); 50 (3); 95 (4) и 100 % мас. ПУ (5); 2адд, 3адд и 4адд – соответствующие теоретические (аддитивные) кривые

Vanautanuatuu	Состав образцов ПИ/ПУ, % мас.							
Характеристики	100/0	95/5	50/50	5/95	0/100			
Температура деструкции, °С: $T_{g1(Hay)} - T_{g1(KOH)}$	234–384	231-380	300-362	301–418	305-430			
$T_{\rm g2(hay)} - T_{\rm g2(koh)}$	-	-	378-425	-	-			
$T_{\rm g3(hay)} - T_{\rm g3(koh)}$	503-596	504-602	530-587	498-572	489-622			
$T_{\pi 4(\text{Hay})} - T_{\pi 4(\text{KOH})}$	622-700	617–691	594-655	585-626	-			
Потеря веса, %:								
Δm_1	8	10	17	70	76			
Δm_2	-	-	12	-	-			
Δm_3	21	21	20	13	16			
Δm_4	58	57	19	3	-			
Температура максимальной скорости деструкции, °С:								
$T_{A1(\max)}$	304	315	345	354	358			
$T_{\mu 2(\text{max})}$	—	_	394	_	—			
$T_{d3(\text{max})}$	591	587	565	539	544			
$T_{\mu4(\max)}$	661	643	604	590	-			
Максимальная скорость потери веса, %/°С:								
$dm_{(\max)1}/dT$	0,1	0,1	0,4	1,0	1,1			
$dm_{(\text{max})2}/dT$	—	-	0,3	-	-			
$dm_{(\text{max})3}/dT$	0,4	0,3	0,4	0,2	0,2			
$dm_{(max)4}/dT$	1,1	1,1	0,4	0,1	-			
Коксовый остаток (<i>m_{кокс}</i>), %	0,1	0,1	0,2	0,1	0,2			

Таблица 2. Устойчивость к термоокислительной деструкции (данные ТГА) индивидуальных ПИ и ПУ, а также ПИ/ПУ пленочных материалов

между компонентами системы, очевидно, формируется сетка межмолекулярных водородных связей. Последнее, как известно, способствует уменьшению микрофазового разделения полимерных компонентов в микрогетерогенных смесях. Этот вывод согласуется с ниже приведенными данными ДСК.

Представляло интерес изучить особенности термоокислительной деструкции индивидуальных ПУ и ПИ, а также изменения устойчивости к термоокислительной деструкции при варьировании состава синтезированных ПИ/ПУ образцов.

Обнаружено, что термоокислительная деструкция индивидуального ПУ происходит в две основные стадии (рис. 5, кривая 1; табл. 2): І стадия – в области температур $T \sim 305-430$ °C образец теряет ≈ 76 % веса; II стадия – при $T \sim 489-622$ °C образец ПУ теряет дополнительно ≈ 16 %. Отметим, что при нагревании сегментированных ПУ, макромолекулы которых имеют жесткие (ДФМДИ) и гибкие блоки (ОБГА), при T > 180 °C сначала разрываются (без потери веса) водородные связи, образовавшиеся в жестких блоках ПУ [13]; затем при T > 305 °C (I стадия деструкции) начинается деструкция цепи по уретановым группам, а затем в области T > 489 °C (II стадия деструкции) разрушаются, преимущественно, гибкие блоки ПУ [13].

Индивидуальный ПИ характеризуется более высокой устойчивостью к термоокислительной деструкции (рис. 5, кривая 5) в сравнении с ПУ, что является типичным для класса ПИ [1, 2]. Термоокислительная деструкция ПИ происходит в три основные стадии (табл. 3): І стадия – в области $T \sim 234 - 384$ °С, потеря веса $\approx 8\%$; II стадия – при $T \sim 503-596$ °С, потеря веса ≈ 21 %; III стадия – при $T \approx 622-700$ °C потеря веса образцом ПИ составила ≈ 58 % (см. табл. 2). Потерю веса образцом ПИ на І-й стадии деструкции мы связываем, прежде всего, с внутрицепной дегидратацией, происходящей в результате пост-имидизации ПАК при температурах, выше температуры синтеза ПИ ($T_{_{\text{синт}}} = 80-200 \text{ °C}$) [22]. Также в этой области температур удаляются остатки высококипящего растворителя (НМП, $T_{_{\rm KMI}} \sim 205 \ ^{\circ}{\rm C}$) и могут деструктировать линейные макромолекулы ПАК, которые не успели имидизироваться [23]. Более высокотемпературные II и III стадии разложения ПИ обусловлены термоокислительной деструкцией, соответственно, линейных и сетчатых фрагментов макромолекул ПИ [23]. Отметим, что частичная сшивка макромолекул ПИ происходит в процессе синтеза вследствие межцепной дегидратации ПАК при T>150 °C, как показано в работе [22].

Установлено, что образцы ПИ/ПУ, характеризуются высокой устойчивостью к термоокислительной деструкции (рис. 5, табл. 2), однако для всех исследуемых образцов обнаружено несовпадение экспериментальных и соответствующих аддитивных кривых ТГА (рис. 5), что, очевидно, свидетельствует о влиянии ПУ-компонента на процессы *in situ* имидизации ПАК при синтезе

Рис. 6. Нормированные ДСК термограммы: *а* – индивидуальный ПИ, *I* – первый скан, *2* – второй скан; *б* – индивидуальный ПУ (*I*), ПИ/ПУ смеси: *2* – 5/95; *3* – 50/50; *4* – 95/5 % мас. Кривые последовательно сдвинуты вверх по оси Ү для упрощения их анализа

ПИ-компонента. Обнаружено, что повышение содержания ПУ-компонента закономерно, однако неаддитивно, влияет на термостойкость ПИ/ПУ образцов. Так, у образца ПИ/ПУ = 50/50 % мас. в области T ~ 360-450 °C наблюдается повышение термостойкости ПУ-составляющей (в сравнении с аддитивными данными), а в области $T \sim 460-680$ °C, где происходит деструкция макромолекул ПИ, четко фиксируется снижение термостойкости данного образца. Известно, что в области средних составов (50/50) микрофазовая структура большинства полимерных смесей характеризуется двойной фазовой непрерывностью (т.е. оба компонента участвуют в формировании протяженной полимерной матрицы), поэтому взаимовлияние компонентов на их свойства в данном случае реализуется в значительной степени. Можно предположить, что отмеченное выше неаддитивное повышение термостойкости данного ПИ/ПУ образца (при T ~ 360-450 °C) связано с присутствием жесткоцепных и более термостойких макромолекул ПИ в микрофазах, обогащенных ПУ-компонентом. Также в результате термоокислительной деструкции ПУ на определенных стадиях появляются ароматические фрагменты макромолекул с вновь образованными реакционноспособными группами (например, изоцианатными [24, 25]), которые могут химически взаимодействовать с остаточными группами в ПИ или подвергаться реакции полициклотримеризации с образованием более термостойких фрагментов, например, полиизоциануратов [13]. Неаддитивное снижение термостойкости ПИ/ПУ при $T \sim 460-680$ °C, очевидно, обусловлено тем, что в процессе синтеза образца присутствие ПУ препятствует in situ имидизации ПАК, как результат формируется более дефектная структура ПИ-компонента со сниженной термостойкостью.

Эти выводы согласуются с ниже приведенными данными ДСК, теплофизические характеристики индивидуальных ПИ и ПУ, а также ПИ/ПУ образцов представлены на рис. 6 и в табл. 3. Установлено, что индивидуальные ПИ и ПУ, а также образцы ПИ/ПУ являются аморфными полимерами, о чем свидетельствует присутствие на соответствующих кривых ДСК эндотермических эффектов, обусловленных переходом полимеров из стеклообразного в высокоэластичное состояние.

Обнаружено, что при первом нагревании образца ПИ (первый скан, рис. 6, кривая *I*) в области $T \approx 210-$ 300 °С наблюдается широкий эндотермический переход (область стеклования), который при $T \approx 310-340$ °C перекрывается с экзотермическим переходом. Согласно выше приведенным данным ИК-спектроскопии и ТГА, указанный экзотермический переход можно связать с химическими процессами дегидратации ПАК и пост-имидизации ПИ (см. схему на рис. 2) [22]. Аналогичный характер ДСК кривых был обнаружен при первом нагревании пленок ПИ/ПУ всех исследованных составов. При повторном нагревании указанный экзотермический переход зафиксирован не был (2-й скан, рис. 6, кривая 2), что свидетельствует о завершенности процесса пост-имидизации ПИ. Также установлено, что групповое рептационное движение сегментов жесткоцепных макромолекул ПИ и изменение их взаимного пространственного расположения (т.е. переход из стеклообразного в высокоэластичное состояние) начинается при высоких температурах (*T*_{ст}≈ 298,8 °C, табл. 3) и происходит в узком диапазоне температур ($\Delta T_{rr} \approx 9.8 \,^{\circ}\text{C}$), что типично для класса термостойких ПИ. Обнаружено также, что данный переход характеризуется невысоким значением скачка теплоемкости ($\Delta C_{p} \approx 0,20 \, \text{Дж/}(\text{r}^{\circ}\text{C})),$ что можно объяснить присутствием в макромолекулах ПИ поперечных сшивок, образованных за счет межцепной дегидратации ПАК [22].

В индивидуальном ПУ размораживание сегментальной подвижности гибкоцепных (ОБГА) участков макромолекул происходит в области *T* ≈ -15,6--1,0°C

Соотор образиор	ПУ-компонент				ПИ-компонент			
	T_{ct1} ,	Δ <i>T</i> _{cτ1} *, °C	Δ <i>C</i> _{p1} , Дж/(г·°С)		T_{ct2} ,	$\Delta T_{\rm cr2}^*$,	ΔC _{p2} , Дж/(г·°С)	
70 Mac.	C		Эксп.	Адд.	C	C	Эксп.	Адд.
100 / 0	_	—	-	-	298,8	9,8	0,20	0,20
95 / 5	_	_	-	-	258,1	31,4	0,16	0,19
50 / 50	-11,6	20,8	0,21	0,25	227,7	25,5	0,12	0,10
5 / 95	-8,8	29,8	0,36	0,47	_	—	_	_
0 / 100	-11,1; 232,0**	14,6 29**	0,49 0,14**	0,49 0,14**	_	_	_	_

Таблица 3. Теплофизические свойства для ПИ/ПУ пленочных материалов

* $\Delta T_{\rm cr} = T_{\rm cr(кон)}$ - $T_{\rm cr(нач)}$; ** Величины $T_{\rm cr1}$, $\Delta T_{\rm cr1}$ и $\Delta C_{\rm p1}$ для жесткоцепных блоков ПУ.

 $(\Delta T_{\rm crl} \approx 14,6$ °С, рис. 6, кривая *I*), при этом температура стеклования ПУ равна $T_{\rm crl} \approx -11,1$ °С, а $\Delta C_{\rm pl} \approx 0,49$ Дж/(г.°С) (табл. 3). В области $T \approx 217-247$ °С зафиксировано размораживание сегментальной подвижности жесткоцепных (ДФМДИ) фрагментов макромолекул ПУ, при этом величина $T_{\rm crl} \approx 232,0$ °С, а $\Delta C_{\rm pl} \approx 0,14$ Дж/(г.°С) (табл. 3) [26].

Для ПИ/ПУ смесей обнаружены отличия основных теплофизических характеристик ($T_{cr}, \Delta T_{cr}, \Delta C_{p}$) полимеров в составе смесей от таковых для индивидуальных ПИ и ПУ (рис. 6, кривые 2-4, табл. 3), что свидетельствует о взаимном влиянии компонентов при формировании микрофазовой структуры ПИ/ПУ образцов. Установлено, что в образцах, содержащих 5 % мас. ПИ или ПУ, фиксируется один эндотермический переход, находящийся близко к температурной области, в которой происходит размораживание сегментальной подвижности макромолекул основного компонента. Так присутствие всего 5 % мас. ПУ в ПИ-матрице приводит к снижению величины T_{cm} на 40,7 °С ($T_{cr} \approx 258,1$ °С), одновременно фиксируется расширение на 21,6 °С интервала стеклования ($\Delta T_{cr2} \approx 31,4$ °C) и неаддитивное снижение на 0,03 Дж/(г.°С) экспериментальной величины $\Delta C_{_{\mathrm{p}2}}$ (табл. 3). Аналогично, для образца состава ПИ/ПУ = 5/95 (% мас.) зафиксировано повышение на 2,3 °С величины T_{cr1} (T_{cr} ≈ -8,8 °С), расширение на 15,2 °С интервала стеклования ($\Delta T_{cr1} \approx 29,8$ °С) и неаддитивное уменьшение на 0,11 Дж/(г.°С) экспериментальной величины $\Delta C_{\rm pl}$. Отмеченные изменения теплофизических характеристик в указанных образцах, безусловно, свидетельствуют о взаимовлиянии компонентов при формировании микрофазовой структуры образцов, что в полимерных смесях возможно только в случае образования микрофаз смешанного состава, в которых присутствуют макромолекулы (или их сегменты) обоих компонентов.

С целью подтверждения предположения о формировании в системе смешанных микрофаз нами были проведены теоретические расчёты по определению состава выделившихся микрофаз с использованием уравнений Fox и Couchman [17–19]. Проведенные расчеты показали, что в образце состава ПИ/ПУ = 95/5 % мас. практически весь ПУ находится в составе смешанных микрофаз, обогащенных ПИ: ~92 % от содержания ПУ по уравнению Fox, или ~86 % – по уравнению Couchman (отметим, что отличия в цифрах обусловлены тем, что при расчетах по Fox учитываются только изменения в величинах T_{ст}, в то время, как при расчетах по уравнению Couchman учитываются также изменения в величинах ΔC_p). Можно заключить, что условия получения данного образца (поливом из раствора с последующим нагреванием до $T \approx 200 \,^{\circ}\text{C}$) способствуют диффузии линейных гибкоцепных макромолекул (или их сегментов) ПУ, в результате чего макромолекулы компонентов переплетаются, формируя микрофазы смешанного состава. В образце состава ПИ/ПУ = 5/95 % мас. в формировании смешанных микрофаз, обогащенных ПУ, принимает участие ~37 % (по Fox) или ~48 % (по Couchman) ПИ от его общего содержания в композиции. Мы полагаем, что в данном образце формирование смешанных микрофаз тормозится вследствие стерических препятствий, обусловленных химической структурой жесткоцепных макромолекул ПИ.

В образце состава ПИ/ПУ = 50/50 % мас. зафиксировано, как и ожидалось, присутствие двух четких эндотермических переходов, обусловленных размораживанием сегментальной подвижности в ПУ-обогащенных микрофазах при $T_{cr1} \approx -11,6$ °C, а также в ПИ-обога-щенных микрофазах при $T_{cr2} \approx 227,7$ °C (табл. 3). Расчеты показали, что доля ПУ в смешанных микрофазах, обогащенных ПИ компонентом, составляет всего ~24 % от содержания ПУ (по Fox), или ~16 % (по Couchman). Известно [27], что в полимерных смесях в области средних составов термодинамическая несовместимость компонентов играет решающую роль, в результате чего процессы микрофазового разделения компонентов доминируют. К сожалению, долю ПИ в ПУ-обогащенных микрофазах рассчитать не представляется возможным, поскольку, как видно из данных табл. 3, в данном образце величина T_{ст1} для ПУ-компонента снизилась на ~0,5 °С (в сравнении с индивидуальным ПУ), что, безусловно, подтверждает факт усиления процессов микрофазового разделения компонентов в системе.

Выводы.

Таким образом, в данной работе методом *in situ* имидизации полиамидокислоты в присутствии 5–95 % мас. линейного сегментированного ПУ, синтезированы и исследованы термостойкие пленочные ПИ/ПУ материалы. Методом Фурье ИК-спектроскопии обнаружено перераспределение сетки физических связей между протоноакцепторными и протонодонорными функциональными группами ПИ и ПУ в результате формирования, очевидно, новой сетки межмолекулярных (между компонентами) водородных связей. Методом ТГА установлено, что ПИ/ПУ пленочные материалы характеризуются высокой устойчивостью к термоокислительной деструкции, которая меняется с составом не аддитивно. Методом ДСК с использованием

Литература

1. Bessonov M.I., Koton M.M., Kudryavtsev V.V. and Laius L.A. Polyimides: Thermally Stable Polymers, 2nd ed. – New York: Plenum, 1987.–318 p.

2. Polyimide: fundamentals and applications / *M.K. Ghosh and K.L.Mittal*, editors. – New York: Marcel Dekker, 1996. – 897 p.

3. *Patel H.S.*, *Patel J.A.* // Int. J. Polym. Mat. – 2007. – **57**, N2. – P. 177-188.

4. *Masiulanis B, Zielinski R.* // J. Appl. Polym. Sci. – 1985. – **30**. – P.2731-2741.

5. *Sendijarevic A., Sendijarevic V., Frisch K.C.* // J. Polym. Sci.: Part A: Polym. Chem. – 1990. – **28**. – P. 3603-3615.

6. *Liao D.C., Heieh K.H.* // J. Polym. Sci.: Part A: Polym. Chem. – 1994. – **32**. – P. 1665-1672.

7. *Zuo M, Takeichi T.* // J. Polym. Sci.: Part A: Polym. Chem. – 1997. – **35**. – P. 3745-3753.

8. *Zuo M., Xiang Q., Takeichi T.* // Polymer. – 1998. – **39**, N 26. – P. 6883-6889.

9. *Zuo M., Takeichi T.* // Polymer. – 1999. – **40**, N 18. – P. 5153-5160.

10. *Бюллер К.-У.* Полиимиды – класс термостойких полимеров. – Ленинград: Химия, 1983. – 310 с.

11. *Awkal M., Jonquiures A., Clement R., Lochon P.* // Eur. Polym. J. – 2006. – **42**, № 6. – P. 1313-1324.

12. Tsai M.-H., Huang S.-L., Liu S.-J., Chen Ch.-J., Chen P.-

J., Chen Sh.-H. // Desalination. – 2008. – **233**. – P. 191-200. 13. *Levchik S.V., Weil E.D.* // Polym. Int. – 2004. – **53**. – P.1585-

1610.

14. *Benson R.S., Lee M.W., Grummitt D.W.* // Nanostructured Materials – 1995. – **6**, N 1-4. – P. 83-91.

15. Ceridorio L., Cardoso M.R., Pavinatto F., Carvalho A.J.F., Mendonca C.R., Balogh D.T. // Polym Int. – 2006. – **55**. – уравнений Fox и Couchman установлено, что в ПИ/ПУ пленочных материалах образуются микрообласти смешанных составов, где происходит взаимопроникновение макромолекул (или их сегментов) обоих компонентов, рассчитан состав смешанных микрофаз.

Авторы выражают благодарность за частичную финансовую поддержку данной работы в рамках проекта международного сотрудничества CNRS (France) и НАНУ (Украина), а также ЦКПП ИХВС НАНУ - за проведение Фурье ИК-спектральных и ТГА исследований, и Даниленко И.Ю. - за отработку методики синтеза образцов.

P. 1069–1074.

16. Беллами Л. Инфракрасные спектры сложных молекул. – М.: Изд-во иностр. л-ры, 1963. – 509 с.

17. Fox T.G. // Bull. Am. Phys. Soc. – 1956. – 1, N 2. – P. 123-131.

18. *Couchman P.R., Karasz F.E.* // Macromolecules. – 1978. – **11**, N 1. – P.117-119.

19. *Couchman P.R.* // Macromolecules. – 1978. – **11**, N 6. – P. 1156-1161.

20. Торопцева А.М., Белогородская К.В., Бондаренко В.М. Лабораторный практикум по химии и технологии высокомолекулярных соединений. – М.: Химия, 1972. – 415 с.

21. Ватулев В.Н., Лаптий С.В., Керча Ю.Ю. Инфракрасные спектры и структура полиуретанов. – К.: Наук. думка, 1987. – 188 с.

22. Дьяконова О.В. Структура и электрохимические свойства частично имидизированных полиамидокислотных мембран: Автореф. дис. канд. хим.

наук. Воронеж. гос. аграрн. у-т. – Воронеж, 1999. – 20 с. 23. *Bajaj B., Lee S., Yoon S., Park B., Kim B., Parka B., Lee J.* // Mater. Chem. – 2012. – **22**. – Р. 2975-2981.

24. *Servay T., Voelkel R., Schmiedberger H., Lehmann S. //* Polymer. – 2000. – **41**, N 14. – P. 5247-5256.

25. *Herrera M., Matuschek G., Kettrup A.* // Polym. Degr. Stab. – 2002. – **78**, N 2. – P. 323-331.

26. *Krol P*. Linear polyurethanes: synthesis methods, chemical structures, properties and applications. – Boca Raton: CRC Press, 2008. – 276 p.

27. *Нестеров А.Е., Липатов Ю.С.* Термодинамика растворов и смесей полимеров. – Киев: Наук. думка, 1984. – 298 с.

Поступила в редакцию 25 июня 2014 г.

Термічні характеристики і фазова структура термостійких поліімід/ поліуретанових плівкових матеріалів

О.П. Григор'єва¹, О.М. Файнлейб¹, О.М. Старостенко¹, Т.А. Шанталій¹, К.Г. Гусакова¹, В.В. Давиденко¹, J.M. Saiter², B. Youssef^{2,3}

¹Інститут хімії високомолекулярних сполук НАН України 48, Харківське шосе, Київ, 02160, Україна ²AMME-LECAP International Lab EA 4528 Universite de Rouen 76801 St. Et. du Rouvray, France ³INSA de Rouen BP 08 Av. de l'Universite 76801, Saint Etienne du Rouvray, France

> Синтезовано та досліджено нові термостійкі плівкові матеріали на основі полііміду (ПІ) і лінійного сегментованого поліуретану (ПУ). Плівкові зразки отримані шляхом in situ імідизації поліамідокислоти (ПАК) за наявності 5 - 95 % мас. ПУ. Методами Фур'є ІЧ-спектроскопії, ТГА і ДСК вивчено вплив співвідношення компонентів на хімічну структуру термічні та теплофізичні властивості отриманих плівкових ПІ/ПУ матеріалів. Встановлено неадитивну зміну теплофізичних характеристик і стійкості зразків до термоокиснювальної деструкції зі зміною співвідношення компонентів. Методом ДСК знайдено, що в процесі синтезу і формування ПІ/ПУ матеріалів утворюються мікрообласті змішаних складів. Склад змішаних мікрофаз розраховано за рівняннями Fox i Couchman.

Ключові слова: термостійкі поліімід/поліуретанові плівкові матеріали, сегментований поліуретан, термоокиснювальна деструкція, мікрофазова структура

Thermal characteristics and phase structure of thermostable polyimide/ polyurethane film materials

O.P. Grigoryeva¹, *A.M. Fainleib¹*, *O.M. Starostenko¹*, *T.A. Shantalii¹*, *K.G. Gusakova¹*, *V.V. Davidenko¹*, *J.M. Saiter²*, *B. Youssef^{2,3}*

¹Institute of Macromolecular Chemistry NAS of Ukraine 48, Kharkivs'ke shose, Kyiv, 02160, Ukraine ²AMME-LECAP International Lab EA 4528 Universite de Rouen 76801 St. Et. du Rouvray, France ³INSA de Rouen, BP 08 Av. de l'Universite 76801, St. Etienne du Rouvray, France

> Novel thermostable materials based on polyimide (PI), and linear segmented polyurethane (PU) have been synthesized and studied. The film samples were obtained by in situ imidization polyamic acid (PAA) in the presence of 5 - 95 % wt. of PU. Using FTIR spectroscopy, TGA and DSC techniques the effect of composition on chemical structure and thermal properties as well as thermal-oxidative stability of the resulting PI/PU film materials has been investigated. Non-additive changes of thermal characteristics and thermal-oxidative stability with varying PI/PU ratio has been establish. Formation of the mixed microphases with varying component content during synthesis procedure has been found using DSC measurements. The microphase component ratio has been calculated using Fox and Couchman equations.

Key words: thermostable polyimide/polyurethane film materials, segmented polyurethane, thermal oxidative degradation, microphase structure.