УДК 678.01:563.21

Исследование термостойкости органопластиков на основе полисульфонамида, армированных волокном Кевлар

А.И. Буря¹, Н.Т. Арламова¹, Ван Сюйфэнь², С.П. Сучилина-Соколенко¹, Линь Иньфан²

¹Днепродзержинский государственный технический университет

2, корп. 3, ул. Днепростроевская, Днепродзержинск, 51918, Украина

² Шанхайский научно-исследовательский текстильный институт, Шанхай, Китай

Исследован процесс термического разложения термостойкого ароматического полиамида – полисульфонамида и органопластиков на его основе. Показано влияние арамидного волокна Кевлар на термостойкость полисульфонамида. По данным термического анализа определены механизм и кинетические параметры процесса термической деструкции исследуемых материалов использованием метода Коатса-Редферна. Структурные превращения на молекулярном уровне в органопластиках исследованы методом ИК- спектроскопии.

Ключевые слова: термостойкие полиамиды, органопластики, ИК-спектры, термостойкость, кинетические параметры.

Введение.

В настоящее время исключительно большое значение приобрели армирующие волокна третьего поколения. Традиционно использовавшиеся материалы (металлы, сплавы металлов) все шире заменяются новыми композитами, изготовление которых без армирующих волокон невозможною [1]. Кроме того, возрастает роль волокон с функциональными свойствами. Несмотря на то, что их выпуск в мире не превышает 1 % от объема производства всех химических волокон, финансовые результаты реализации впечатляют - около 1 млрд. USD в год. К числу этих полимерных волокон относятся и пара-арамидные: Русар (ООО НПП «Термотекс», Россия), Армос (ООО «Лирсот», Россия), а также Кевлар (Фирма «Дюпон», США), Тварон (фирма «Тейджин-Акзо, Нидерланды), Технора (фирма «Тейджин», Япония), которые получают из ароматических полиамидов и содержат в своей цепи не менее 85% амидных групп [2]. Перечисленные волокна являются наиболее прочными и высокомодульными по сравнению с другими органическими. Параи метаарамидные волокна производятся уже более 20 лет в США, России, Франции, Испании и Японии [3].

Объекты исследования и их переработка в изделия.

В качестве объекта исследования был выбран новый термостойкий ароматический полиамид Танлон T-500 – полисульфонамид (ПСА) (производство Китай) [4] следующего строения:

$$\begin{bmatrix} \overset{H}{N} & & & & & \\ & & & & & & \\ & & & & &$$

Для ПСА характерны высокие значения энергии активации термического разложения и их постоянство в широком диапазоне температур. При этом следует отметить, что введение в полимерную цепь *пара*замещенных фрагментов не приводит к упрочнению амидной связи. Более того, поли-3,3'-дифениленсульфонизофталамид более устойчив к термическим воздействиям, чем поли-4,4'-дифениленсульфонтерефталамид, что находится в противоречии с установившимися представлениями [5]. Поэтому, в нашем случае использовали метапараблоксополимер ПСА.

Свойства полисульфонамидного связующего приведены в табл. 1.

В качестве армирующих наполнителей были

ruomigu r. ebenerbu nomeymbernamigu muptar runner r 200										
Цвет	Плотность,	Влажность,	Температур	Температура эксплуатации, °С						
	г/см ³	%	длительной	кратковременной	индекс					
кремовый	1,41–1,42	6,3	250	300	33					

Таблица 1. Свойства полисульфонамида марки Танлон Т-500

Таблица 2. Свойства арамидного волокна Кевлар 29

Плотность,	Прочность,	Разрывное удлинение,	Температура разложения,
г/см ³	г/дтекс	%	°C
1,44–1,46	20–22	3,6	427–482

Наполнитель	Содержание, % мас.	Связующее	Содержание, % мас.
	0		100
A	5	Ароматический полиамид –	95
Арамидное	10	полисульфонамид Танлон	90
волокно кевлар 23	15	T-500	85
	20		80

Таблица 3. Состав пресс-композиций на основе полисульфонамида

выбраны ароматические полиамидные волокна третьего поколения марки Кевлар 29 (производство США), свойства которого приведены в табл. 2.

Состав пресс-композиций приведен в табл. 3.

Технологическая часть.

Способ переработки ПСА определяется, прежде всего, специфическими свойствами, присущими этому

классу полимеров: повышенной жесткостью макромолекул и сильным межмолекулярным взаимодействием и, вследствие этого, низкой деформируемостью в области температуры размягчения и текучести, что затрудняет их переработку обычными способами и при обычных условиях. Учитывая, что температура плавления ароматических полиамидов лежит в области

Таблица 4. Отнесение полос в ИК-спектрах полисульфонамида и органопластиках на его основе, содержащих арамидное волокно Кевлар

N⁰	№ Содержа- Амидные полосы, см ⁻¹				V (N-H) (c	_{р.)} , см ⁻¹	$v_{(SO_2)}, v_{(S=O)(c)}$		Замещения в		Примеча-		
π/π	ние						иδ	N-H)	(2/)	() (-	бензо.	льном	ние:
											кол	ьце	
рис.	волокна	Ами	дI (с.)	Амид	II (c.)	Амид III	в бли:	жней	$\nu_{\rm s}$	ν_{as}			изменения
		ν_{0}	C=O)	δ(Ν	-H)	$v_{(C-N)}$	(3500-25	500)и	сим.	асим.	1,3- за-	1,4- за-	
	Кевлар,						далы	ней*	валент.	валент.	мещения	мещения	
							(900-	450)	коле-	коле-			
	0/ 1/00	Cno	1 000	Cno	1 000	Пологи	Сробол		оания 1100	оания			
	70 Mac.	Сво-	Acco-	Сво-	Acco-	Ахит П	Свооод-	Acco-	1000				
		00Д- цад	ции-	00д-	ции-	Амиди	ная	цииро-	1000	1360	810 760	840 810	
		пая фор-	рован-	ная форма	-ная	и Амид Ш _	форма	ваппая форма	для суль-	1300-	710-690	2 0+0-010	
		фор ма	форма	φopmu	don-	пере-		φοριια	фонов	1555	3-4	полосы	
			Topinu		ма	крыва-			суль-		положе-	полоса	
						ются			фа-		ния с	840>810	
									натов,		плечом		
									суль-				
									фо-				
									ами-				
									дов	1			
		1705	1665-	1530,	1570,	1420-	3440,	3300,	1170-				
		-	1625	1260-	1300-	1405	3460,	3300-	1160				
		1665,		1550	1250	1300-	3320	3070					
		1650			1515 (ap.)	1250							
1	2	2	4	5	(cp.)	7	Q	0	10	11	12	12	14
1	0	5	-	5	0	/	0	<i>,</i>	10	11	12	15	691.68
	0				5,4	_					$\overline{}$		(сп шип)
			p.,		64	н Н			leT		dи	dиı	с тонкой
1			ПП)T]	ми ((\cdot)) V6J		Ē	<u></u> П)	структу-
, RE				64 4p.	10 (с А 298 Ир.)	53 шир		П, Ц	16	сл.	лет	рой;
NB((cr	32,	+ je	<u>е</u> 1, П	43, ., п		,38 (П.)	<u>96,</u> п.)	+	ШИ	566,58 (п.,
, Kp			<u>33</u> с п.	15 cp.,	, I	крь 3,8 сл.,	34 ч. с		10.	13	ПИ	TT	шир.),
-			45,	Ű	HT.,	spel ((0)		1.05,		цен	11+	исчезла
			16		1де	- пе 1			11(биз	33.	полоса
					He I	+					Η̈́	8	1015,23
					Ľ Í								(сл., узк.)

2 3	3		4	5	6	7 Тип	8	9	10 (.)	11	12	13	14 717,65 (cp.,
	10	-	1656,091 (п.с., узк.)	1523,60 (с., шир., с плечом)	1591,6 (ср., узк.)	+ не идент., перекр. с Ам II; 1246,74 (ср., шир.	3438,86 (оч. с., шир.)	+ (оч. сл., плечи)	1143,34 (ср.) 1102,16 (ср., дублет уз	1397,30 (ср., узк.) 1299,20 (ср., шир.)	840,80 (п.), 864,72 (п.) триплет	829,98 (ср., шир.) 781,94 (сл., узк.)	шир.); 691,92 (ср., шир.); 561,46 (ср., шир.); 581,01
	15	_	1654,14 (оч.с., узк.)	1517,82 (с., шир. с плечом)	1591,88 (ср., узк.)	+ не идент., перекр. с Амид II; 1247,18 (ср., шир.)	+ ср., шир., плечи	3318,50 (ср., шир.)	1146,63 (ср., узк.) 1106,30 (ср., узк.)	1397,30 (ср., узк.), 1318,40 (с., шир.)	891,98 (п.), 864,10 (п., узк.) триплет	824,43 (ср., шир.) 784,02 (сл., узк.)	722,84 (ср., узк.); 679,76 (ср., шир.); 668,43 (оч. сл., узк.); дублет 565,50 и 580,15 (п., узк.); 528,87 (п., узк.)
	20	_	1653,07 (оч. с., узк.)	1518,38 (с., шир., с плечом)	1591,9 (ср., узк.)	+, не идентиф., перекрыв. с Амид II 1249,60 (ср., шир.)	3444,96 (с., шир., плечо)	+ (с., узк., не идентиф.)	1146,21 (с., узк.) 1105,56 (с., узк.)	1397,16(с., узк.) 1318,73 (с., шир.)	891,36 (п., узк.), 864,10 (идентиф. триплет)	823,62 (сл., узк.) 784,5 (сл., узк.)	721,95 (ср., узк.); 679,76 (ср., шир.); 685,90 (ср., шир.); 611,84 (оч. сл., узк.); дублет 581,01 и 562,89 (п., узк.); 527,80

Продолжение табл. 4

Обозначения колебаний: с – сильное; ср. – среднее; сл. – слабое; оч. сл. – очень слабое; оч. с. – очень сильное. Другие обозначения: шир. – широкая; узк. – узкая; п. – переменная. *v*- валентные колебания; δ – деформационные колебания. *Дальняя область колебаний $v_{(N-H)}$ перекрывается с дальней областью $\delta_{(N-H)}$ в амидах, аминах, а также $v_{s(S=O)}, \delta_{(C-H)}$, в алкенах цис-связей HC=CH. Средняя область ИК-спектра характерна также для «пульсационных колебаний бензольного кольца $v_{(C=C)ep}$ =1600–1580 см⁻¹ и 1500–1450 см⁻¹, причем 1500 см⁻¹ интенсивней, чем линия 1600 см⁻¹; если есть сопряжения, то интенсивность – увеличивается, а частота – понижается. В области 1690–1635 см⁻¹ (пер.) и 1665–1630 см⁻¹ могут также быть и $v_{(C=N)}$.

400 °C, т.е. температур, при которых начинается их интенсивное разложение, переработку исследуемого полиамида производили в области температур, лежащих выше температуры размягчения и ниже температуры его плавления методом компрессионного прессования на гидравлическом прессе ПСУ-50 при давлении 70 МПа [6].

Технология переработки ПСА в блочные изделия включала следующие стадии: таблетирование, сушку, прессование и механическую обработку.

Таблетирование. При изготовлении заготовок, соответствующих изделию по форме и размерам,

Рис. 1. ИК-спектры ароматического полиамида полисульфонамида Танлон (1) и ОП на его основе, содержащих 5 (2) и 10 % мас. арамидного волокна Кевлар (3)

учитывается, что размеры заготовок при извлечении из формы, хранении и особенно при прогреве во

Рис. 2 ИК-спектры ОП на основе Танлона, содержащих 15 (1) и по 20 % мас. арамидного волокна Кевлар (2) и исходного волокна Кевлар 29 (3)

время сушки увеличиваются примерно на 1,5–2,0 % по сравнению с размерами формы, в которой производили таблетирование.

Сушку заготовок производили в термошкафу в

Рис. 3. Кривые термогравиметрического анализа полисульфонамида (1) и ОП на его основе, содержащих 5 (2); 10 (3); 15 (4) и 20 % мас. арамидного волокна Кевлар (5)

паблица 5. термостоикоств материалов					
Материал	<i>T</i> ₅ , °C	<i>T</i> ₁₀ , °C	<i>T</i> ₂₀ , °C	$T_{ m экз I}$, °С	$T_{ m экз II}$, °С
ПСА	230	310	467	467	-
ПСА+5 % мас. волокна Кевлар	295	332	468	470	-
ПСА+10 % мас. волокна Кевлар	357	471	490	472	-
ПСА+15 % мас. волокна Кевлар	361	450	495	475	590
ПСА+20 % мас. волокна Кевлар	300	446	486	468	590

Таблина 5. Термостойкость материалов

 $T_{5, T_{10}}, T_{20}$ – температуры 5, 10 и 20 %-ной потери массы; $T_{_{5K3 I, II}}$ – температуры, при которых наблюдаются экзотермические пики, соответствующие деполимеризации материала.

течении 2–3 ч при температуре 150–250 °С так, чтобы таблетка из термошкафа сразу же загружалась в прессформу, нагретую до температуры 250–275 °С.

Формование. Методом прямого компрессионного прессования обеспечивали выдержку материала без давления в пресс-форме при температуре 330–340 °C в течение 15 мин. и под давлением 70 МПа 15 мин. Не снимая давление, охлаждали пресс-форму до T=252 °C и затем извлекали готовое изделие (образец).

Методы исследований.

Учитывая то, что межмолекулярное взаимодействие на границе раздела фаз полимер – армирующее волокно относится к числу главных факторов, определяющих основные эксплуатационные характеристики органопластика (ОП), были исследованы структурные превращения на молекулярном уровне методом ИКспектроскопии (спектрометр VERTEX 70, Германия, фирма Bruker).

Для проведения термогравиметрических испытаний использовали микротермовесы TG 209 *F3 Tarsus производства Германии*, которые работают в диапазоне температур от комнатной до 1000 °C с возможностью выбора скорости нагрева от 0,001 до 100 °C/мин. Интерпретация ИК-спектров полисульфонамида и органопластиков на его основе.

Сравнительный анализ ИК-спектров (табл. 4, рис. 1, 2) исходного полимерного связующего полисульфонамида Танлон, арамидного волокна Кевлар и ОП на их основе показал следующее:

1. В случае прессования при *T*_{прес.}=340 °С в полисульфонамиде Танлон протекают процессы, связанные с изменениями амидных групп как в *пара*-, так и *мета*-положениях (рис. 1, спектр *I*; табл. 4) – области 1000–450 см⁻¹; а также 1654–1400 см⁻¹. Вероятно [7], это связано с переходом группировки

$$\begin{array}{ccc} -C - N - \longrightarrow -C = N - \\ II & I \\ O & H & OH \end{array}$$

о чем свидетельствует широкая полоса в области $\delta_{(O-H)}$ 920–860 см⁻¹ и последующим участием –ОН-группы в образовании межмолекулярных как водородных, так и N–O-связей ($v = 690 \div 490$ см⁻¹).

2. Наиболее сильные изменения ИК-спектров ОП, а следовательно, и изменения свойств наблюдаются для ОП, содержащего 15 % мас. волокна (рис. 2, спектр *1*; табл. 4).

3. Для волокна Кевлар полосы v_{as} =1631,64; v_s =1414,94 (сл.) и 545,45 см⁻¹ свидетельствуют о наличии карбоксилатионов, карбоксильных и аминогрупп, соединенных водородными и ионными связями (рис. 2, спектр 3; табл. 4)

 Таким образом, наиболее вероятными связями между полисульфонамидом Танлон и арамидным волокном Кевлар являются водородные, химические и ионные межмолекулярные связи [8].

Исследование влияния волокна Кевлар на термостойкость полисульфонамида

Результаты термогравиметрического анализа

Рис. 4. Кривые дифференциальнотермогравиметрического анализа фенилона ПСА (1) и ОП на его основе, содержащих 5 (2); 10 (3); 15 (4) и 20 % мас. арамидного волокна Кевлар (5)

(табл. 5, рис. 3, 4) свидетельствуют о высокой термостойкости как исходного ПСА, так и ОП на его основе. Армирование арамидными волокнами Кевлар повышает термостойкость исходного связующего, особенно в случае 15 % -ного наполнения.

На рис. З а,б показано, что контуры всех кривых "потеря массы-температура" аналогичны, т.е. разложение армированного органическими волокнами ПСА протекает подобно чистому. На первом этапе для всех исследуемых материалов в температурном диапазоне 200-220 °С наблюдается постепенное уменьшение массы (1-2 %) за счет удаления влаги. Затем, вплоть до T=300-350 °C, масса образцов остается практически неизменной; при этом наблюдается плавный ход кривых дифференциально-термогравиметрического анализа (ДТА) без ярко выраженных изменений (рис. 4). Интенсивная деструкция как исходного ПСА, так и ОП на его основе, сопровождающаяся значительной потерей массы, начинается выше T=460 °C. На кривых ДТА в этой области (467-475 °C) наблюдаются узкие или средние экзотермические интенсивные пики, относящиеся к термическому разложению материала. Как видно из рис. 4 (кривые 4, 5), в случае армирования ПСА 15 и 20 % мас. волокна наблюдается и 2-й экзотермический, узкий, слабой интенсивности пик, соответствующий деполяризации материала.

Определение возможного механизма и расчет

Кинетическое	Процесс, лимитирующий скорость	Математическая модель
уравнение	реакции	процесса
$k\tau = \alpha$	Зародышеобразование по степенному закону, n=1	(1)
$k\tau = 2\alpha^{1/2}$	" , <i>n</i> =2	(2)
$k\tau = 2[1 - (1 - \alpha)^{1/2}]$	Реакция на границе раздела фаз:	(3)
$k\tau = 3 [1 - (1 - \alpha)^{1/3}]$	- сферическая симметрия	(4)
$k\tau = -\ln(1 - \alpha)$	Случайное зародышеобразование, одно ядро на каждую частицу	(5)
$k\tau = 2[-\ln(1 - \alpha)]^{1/2}$	Случайное зародышеобразование, уравнение Авраами-Ерофеева, <i>n</i> =2	(6)
$k\tau = 3 [-\ln(1-\alpha)]$, <i>n</i> =3	(7)
$k\tau = 4[-\ln (1-\alpha)]^{1/4}$, <i>n</i> =4	(8)
$k\tau = 1/2 \alpha^2$	Одномерная диффузия	(9)
$k\tau = (1 - \alpha)\ln(1 - \alpha) + \alpha$	Двумерная диффузия, цилиндрическая симметрия	(10)
$k\tau = 3/2[1 - (1 - \alpha^{1/3})]^2$	Трехмерная диффузия, сферическая симметрия	(11)
$k\tau = 3/2[(1-2/3\alpha)-(1-\alpha)^{2/3}]$	Двумерная диффузия, уравнение Гистлинга Броунштейна	(12)

Таблица 6. Кинетические уравнения различных механизмов гетерогенных процессов [9]

кинетических параметров процесса термодеструкции ПСА осуществляли с использованием интегральных кинетических уравнений различных механизмов гетерогенных процессов по методу Коатса-Редферна [10] (табл. 6).

Критериями выбора математической модели являлись коэффициент корреляции прямой в координатах уравнения Аррениуса (*r*) и минимум функции (*S*):

$$S = f\{\alpha(\tau), T(\tau), \Delta T(\tau), E_{akr}, Z\},$$
(13)

$$S = \sum_{i=1}^{n} \sqrt{\frac{(\alpha_{3} - \alpha_{p})^{2}}{n}},$$
 (14)

где: α_{3}, α_{p} – экспериментальные и расчетные значения степени превращения; *n* – количество эксперименталь-

ных данных; T – температура; $E_{\text{акт.}}$ – энергия активации; Z – предэкспоненциальный множитель.

Результаты расчета выходных параметров термодеструкции ПСА: коэффициента корреляции, минимума функции, энергии активации и предэкспоненциального множителя, рассчитанные по программе [11], разработанной для IBM, приведены в табл. 7.

Термодеструкция полимеров, при которой весьма вероятна относительно высокая концентрация свободных радикалов, в большинстве случаев имеет радикально-цепной механизм [12], состоящий из следующих стадий: І – инициирование; ІІ – развитие цепи; ІІІ – передача цепи и IV – обрыв цепи.

Высокие значения коэффициента корреляции

Таблица 7. Расчетные кинетические параметры процесса термодеструкции ПСА

Математическая модель процесса		r	S	Е _{акт.} , кДж/моль	lg Z
$k\tau = \alpha$	(1)	0,977	0,0103	7,523	-2,890
$k\tau = 2\alpha^{1/2}$	(2)	0,751	0,0104	1,292	-3,210
$k\tau = 2[1 - (1 - \alpha)^{1/2}]$	(3)	0,976	0,0115	19,499	-1,750
$k\tau = 3 [1 - (1 - \alpha)^{1/3}]$	(4)	0,975	0,0121	26,298	1,260
$k\tau = -\ln(1 - \alpha)$	(5)	0,971	0,1349	40,378	-0,072
$k\tau = 2[-\ln(1 - \alpha)]^{1/2}$	(6)	0,943	4,8100	84,677	3,836
$k\tau = 3 [-\ln(1-\alpha)]$	(7)	0,950	0,1190	15,132	-1,804
$k\tau = 4[-\ln (1-\alpha)]^{1/4}$	(8)	0,898	0,1665	6,719	-2,305
$k\tau = 1/2 \alpha^2$	(9)	0,984	0,0104	25,150	-1,950
$k\tau = (1 - \alpha)\ln(1 - \alpha) + \alpha$	(10)	0,986	0,5070	39,092	-0,710
$k\tau = 3/2[1-(1-\alpha^{1/3})]^2$	(11)	0,982	0,3680	25,152	0,830
$k\tau = 3/2 [(1-2/3\alpha) - (1-\alpha)^{2/3}]$	(12)	0,985	0,3012	46,616	-0,540

Математическая модель процесса	r	S	Е _{акт.} , кДж∕моль	lg Z						
ПСА+5 % мас. волокна Кевлар										
$k\tau = \alpha (1)$	0,936	0,018	21,40	-3,37						
$k\tau = 2[1 - (1 - \alpha)^{1/2}](3)$	0,900	0,014	20,35	-2,60						
$k\tau = 1/2 \ \alpha^2 \ (9)$	0,885	0,018	12,52	-0,18						
	ПСА+1	0 % мас. волокна Кев	влар							
$k\tau = \alpha (1)$	0,955	0,022	23,02	-2,55						
$k\tau = 2[1 - (1 - \alpha)^{1/2}](3)$	0,967	0,025	20,28	-1,88						
$k\tau = 1/2 \ \alpha^2 \ (9)$	0,976	0,223	36,07	-1,27						
	ПСА+1	5 % мас. волокна Кев	влар							
$k\tau = \alpha (1)$	0,840	0,052	27,63	-2,5						
$k\tau = 2[1 - (1 - \alpha)^{1/2}](3)$	0,843	0,057	23,04	-1,67						
$k\tau = 1/2 \ \alpha^2 \ (9)$	0,904	0,052	63,55	-1,17						
ПСА+20 % мас. волокна Кевлар										
$k\tau = \alpha (1)$	0,625	0,113	28,30	-2,66						
$k\tau = 2[1 - (1 - \alpha)^{1/2}](3)$	0,646	0,115	20,42	-2,04						
$k\tau = 1/2 \ \alpha^2 \ (9)$	0,741	0,112	56,54	-1,49						

Таблица 8. Кинетические параметры процесса термолиза ОП на основе ПСА

(табл. 7) получены по кинетическим уравнениям (1, 3–5, 9–12). Поэтому в качестве основного критерия выбора оптимальной математической модели процесса термодеструкции использовали минимальное значение *S*. Таким образом, исходя из данных табл. 7, установлено, что наилучшим образом процесс термодеструкции ароматического полиамида ПСА описывает уравнение реакции 1-го порядка (3), которое с учетом ΔT принимает вид:

 $Z \exp[E_{akm}/(R(T \pm \Delta T))]\tau = 2\alpha^{1/2}, \qquad (15)$

где: $+\Delta T$ и $-\Delta T$ соответствуют отклонениям температуры при экзо- и эндотермических физико-химических превращениях в процессе термодеструкции материала. Аналогичным образом ΔT учитывали в расчетах по всем представленным (1–12) уравнениям.

Как известно [13], при термической деструкции полимеров, содержащих в цепи ароматические ядра, основной является стадия инициирования цепи. Это подтвердилось и в результате расчета, так как кинетическое уравнение (1) описывает процесс случайного зародышеобразования по степенному закону: ароматический полиамид ПСА претерпевает мономолекулярные превращения, в результате которых из валентно-насыщенных молекул образуются радикалы, обладающие сравнительно малой реакционной способнос-Учитывая то, что при термолизе тью. полисульфонамида в первую очередь расщеплению подвергаются наиболее слабые Ph-N и C-N-связи [13], можно предположить, что модель (1) описывает нижеприведенный гомолитический процесс с образованием свободных радикалов:

$$\begin{bmatrix} N & \bigcirc & 0 \\ H & 0 \\ H$$

$\longrightarrow \stackrel{H}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\rightarrow} \stackrel{$

Адекватно отражает процесс и математическая модель реакций на границе раздела фаз (3). Очевидно, здесь происходит развитие цепи в результате гетерогенной реакции на границе полимер – газообразные продукты термолиза (CO_2 , CO, H_2O , SO_2 и др.). Кроме того, высокий коэффициент корреляции при минимальном значении *S* наблюдается и для случая одномерной диффузии (9) – частицы распада диффундируют к слою золы, накапливающейся по мере сгорания ПСА. Очевидно это наиболее медленный процесс, так как он требует большой энергии активации (табл. 7).

Аналогичным образом был проведен расчет кинетических параметров и для ОП на основе ПСА. Как и следовало ожидать, термодеструкцию ОП адекватно описывают те же математические модели, что и в случае исходного полимера (табл. 8). Для ПСА характерна высокая энергия активации термического разложения. Исходя из результатов установлено, что введение 20 % мас. наполнителя приводит к увеличению энергии активации процесса термодеструкции в 1,2–37,0 раза, что и коррелирует с данными табл. 5.

Выводы.

1. В результате проведенных исследований изучен процесс термического разложения ароматического полиамида ПСА и органопластика на его основе.

2. Установлено, что термостойкость исходного полимера при введении арамидного волокна Кевлар возрастает, наиболее значительно в случае 15 % мас. (на 28–140 °C), в этом же случае увеличивается и энергия активации процесса термодеструкции. По данным результатов термического анализа определены механизм и кинетические параметры процесса термической деструкции исследуемых материалов с использованием метода Коатса-Редферна.

4. Структурные превращения на молекулярном

Литература

1. *Будницкий Г.А.* Полимерные волокна третьего поколения: разработки, свойства, применение. // Технический текстиль. – 2004. – № 10. - С. 10-12.

2. *Williams Dede*. Taking a PEEK into China. // Eur. Chem. News. -2005. - **83**, N. 2165. - P. 30-31.

3. *Peng Tao, Ye Guangdou*. Development of p-aromatic polyamide fiber and its reinforced composite material. // China Synthetic Fiber Industry. -2004. -27, N_{2} 6. -P. 46-49.

4. Tanlon against fire, Shanhai Tanlon fiber CO, Ltd.

5. Беляков В.К., Кособуцкая А.А., Савинов В.М., Соколов Л.Б., Ерин А.Ф., Берлин А.А., Иванов А.Ф. Термическая и термоокислительная деструкция изомерных полидифенилсульфонамидов. // Высокомолекуляр. соединения. Сер. А. - 12, № 10. -1970. - С. 2270-2278.

6. *Буря А.И., Кузнецова О.Ю., Деркач А.Д., Чэнь Югуан, Линь Иньфан.* Исследование влияния параметров переработки на прочностные свойства полисульфонамида. // Композит. материалы. - 2011. - 5, № 1. - С. 84-88. уровне в органопластиках, исследованные методом ИК-спектроскопии, показали, что наиболее вероятными связями между полисульфонамидом Танлон и арамидным волокном Кевлар являются водородные, химические и ионные межмолекулярные связи.

7. *Тарасевич Б.М.* ИК-спектры основных классов органических соединений материалов. – М.: НГУ, 2012. – 55 с.

8. *Гордон А.*, *Форд Р*. Спутник химика. / Пер. с англ. – М.: Мир, 1976. - 541 с.

9. Шестак Я. Теория термического анализа. / Пер. с англ. - М.: Мир, 1987. - 456 с.

10. Zuru A.A., Whitehead R., Criffiths D.L. A new technique for determination of the possible reaction mechanism from non-isotermal thermogravimetric data // Thermochim. Acta. 1990. - 164. – P. 285-305.

11. Буря А.И., Арламова Н.Т., Холодилов О.В., Сытник С.В. Исследование термодеструкции фенилона и углепластиков на его основе // Материалы. Технологии. Инструменты. - 2001. - **6**, № 1. - С. 58-61.

12. Эмануэль Н.М., Кнорре Д.Г. Курс химической кинетики. – М.: Высшая школа, 1969. – 432с.

13. *Коршак В.В.* Химическое строение и температурные характеристики полимеров. –М.: Наука, 1970. – 367 с.

Поступила в редакцию 27 мая 2015 г.

Дослідження термостійкості органопластиків на основі полісульфонаміду, армованих волокном Кевлар

О.І. Буря¹, Н.Т. Арламова¹, Ван Сюйфень², С.П. Сучиліна- Соколенко¹, Лінь Іньфан²

¹Дніпродзержинський державний технічний університет вул. Дніпробудівська, 2, корп. 3, Дніпродзержинськ, 351918, Україна ²Шанхайський науково-дослідний текстильний інститут, Шанхай, Китай

> Досліджено процес термічного розкладу термостійкого ароматичного поліаміду – полісульфонаміду і органопластиків на його основі. Показано вплив арамідного волокна Кевлар на термостійкість полісульфонаміду. За даними термічного аналізу визначені механізм і кінетичні параметри процесу термічної деструкції досліджених матеріалів з використанням методу Коатса-Редферна. Структурні перетворення на молекулярному рівні в органопластиках досліджені методом ІЧ-спектроскопії.

Ключові слова: термостійкі поліаміди, органопластики, ІЧ-спектри, термостійкість, кінетичні параметри.

Investigation of thermal stability organic plastics based of polysulfonamide reinforced by fiber Kevlar

Burya A.I.¹, Arlamova N.T.¹, Wang Suyufen², Suchilina-Sokolenko S.P.¹, Lin Yinfang²

¹Dneprodzerzhynsk State Technical University Dneprostroevskaya str., 2, biuld. 3, Dneprodzerzhynsk, 51918, Ukraine ²Shanghai Textile Research Institute, Shanghai, China

The process of thermal decomposition of the heat-resistant aromatic polyamide polysulfonamide and organic plastics based on it. It is shown the influence of aramid fibers on the thermal stability of polysulfonamide. The influence of Kevlar aramid fiber for thermal stability of polysulfonamide are shown. According to the results of thermal analysis, the mechanism and kinetic parameters of the thermal destruction process of materials using the Koats-Redfern method are determination. Structural transformations at molecular level in organic plastics are studied by the method of IR- spectroscopy.

Key words: heat-resistant polyamides, organic plastics, IR-spectra, thermal resistant, kinetic parameters.