УДК 54-126: 678-19: 66.061.3

Влияние эпоксифункционализированных ПОСС на термостойкость нанокомпозитов на основе сетчатых полициануратов

О.Н. Старостенко¹, О.П. Григорьева¹, А.М. Файнлейб¹, J.M. Saiter², B. Youssef^{2,3}, D. Grande⁴

¹Институт химии высокомолекулярных соединений НАН Украины 48, Харьковское шоссе, Киев, 02160, Украина ²AMME-LECAP International Lab EA 4528, Universite de Rouen 76801 St. Et. du Rouvray, France ³INSA de Rouen BP 08 Av. de l'Universite 76801, Saint Etienne du Rouvray, France ⁴Institut de Chimie et des Materiaux Paris-Est UMR 7182 CNRS – Universite Paris Est Val-de-Marne 2-8, rue Henri Dunant, 94320 Thiais, France

> Методом in situ реакционного формования синтезированы и исследованы новые органонеорганические нанокомпозиты на основе термостойких полициануратных сеток (ПЦС) и эпоксифункционализированных полиэдральных олигомерных силсесквиоксанов (ПОСС), содержащих разное количество эпоксидных групп. Методом термогравиметрического анализа (ПГА) исследовано влияние содержания и типа нанонаполнителя на термическую стойкость и устойчивость к термоокислительной деструкции синтезированных нанокомпозитов. Установлено, что в зависимости от содержания и типа нанонаполнителя меняется стойкость ПЦС/ПОСС нанокомпозитов к термической и термоокислительной деструкции. Для большинства синтезированных нанокомпозитов обнаружено торможение процессов термической и термоокислительной деструкции в области температур ниже 470 °С, что позволило сделать вывод о повышении огнестойкости полученных пленочных материалов.

Ключевые слова: *in situ* реакционное формование, полимерные нанокомпозиты, термостойкие полицианураты, эпоксифункционализированные ПОСС, термостойкость.

Введение.

Органо-неорганические нанокомпозиты (ОННК) сочетают в своем составе органическую и неорганическую составляющие, за счет чего характеризуются улучшенным комплексом свойств, который можно целенаправленно изменять путем варьирования типа и содержания нанонаполнителя, особенно при использовании нанонаполнителя, способного ковалентно связываться с полимерной матрицей [1]. К такому типу нанонаполнителя относятся так называемые функционализированные полиэдральные олигомерные силсесквиоксаны (ПОСС) [1-12]. ПОСС - это класс химических соединений эмпирической формулы [RSiO_{1,5}], в их состав входит неорганический силсесквиоксановый каркас полиэдрального строения $[SiO_{1,5}]_n$ (где $n = 6 \div 2m$, а m > 3), а также одинаковые или разные периферийные заместители *R*, которые могут содержать как реакционноспособные функциональные, так и нереакционноспособные группы [5]. В настоящее время известно более 200 ПОСС различного химического строения, при этом разнообразие молекул ПОСС достигается именно благодаря варьированию строения заместителей возле атомов кремния. Поскольку строение каркаса ПОСС очень близко к строению кварца и, таким образом, молекулы ПОСС имеют размер 1–3 нм, то при создании ОННК на их основе, неорганическая составляющая диспергируется в полимерной матрице практически на молекулярном уровне [6]. Химическая прививка ПОСС к полимерной матрице увеличивает эффективность диспергирования наполнителя в органической матрице за счет повышения межфазной адгезии на границе раздела фаз полимерная матрица/нанонаполнитель.

Термостойкие полициануратные сетки (ПЦС) – это густо сшитые сетчатые полимеры, синтезированные путем полициклотримеризации олигомеров циановых эфиров бисфенолов [13]. ПЦС имеют уникальный комплекс физико-химических свойств, а именно: высокие термо- и теплостойкость, температуру

Рис. 1. Химическая структура дицианового эфира бисфенола E (ДЦБЕ)

стеклования ($T_{cr} > 250$ °C) и огнестойкость, высокую адгезию к различным субстратам (металлам, угле- и стекловолокну, полимерам и пр.). ПЦС являются признанными диэлектриками с низким значением диэлектрической константы (ε' ≈ 2,5-3,2), практически не поглощают воду [13]. В настоящее время опубликованы только несколько работ [14-23], в которых синтезированы и исследованы ПЦС/ПОСС нанокомпозиты. Следовательно, исследования в области изучения закономерностей создания новых ОННК на основе ПЦС/ПОСС практически только начинаются как за рубежом, так и в Украине. Поскольку, макромолекулы ПЦС имеют сшитую структуру, то единственным способом создания на их основе ПОСС-содержащих нанокомпозитов является проведение синтеза ПЦС-матрицы методом реакционного формования in situ с ПОСС при высоких температурах (~ 180-300 °C) [13, 24].

Поэтому целью данной работы было создание новых ОННК на основе термостойких сетчатых полициануратов, ПЦС, и эпоксифункционализированных ПОСС, а также исследование влияния типа и содержания нанонаполнителя на термостойкость синтезированных ПЦС/ПОСС нанокомпозитов.

Экспериментальная часть.

1,1' – Бис(4-цианатофенил)этан (дициановый эфир бисфенола Е, ДЦБЕ), торговая марка PRIMASET® LECy (Lonza Group Ltd., Bazel, Швейцария), химическая структура ДЦБЕ приведена на рис. 1. ДЦБЕ – прозрачная переохлажденная жидкость с такими показателями: $T_{nn} = 29 \,^{\circ}$ С; η (при $T = 25 \,^{\circ}$ С) = 140·10⁻³ Па·с; содержание примесей <1 %.

В качестве нанонаполнителя ПЦС-матрицы были использованы три типа ПОСС (Aldrich, США), а именно: с одной эпоксидной группой – ПСС-глицидил-гептациклопентил (ПСС-ГГ), с тремя эпоксидными группами – три[(эпоксипропоксипропил) диметилсилокси]-

ПОСС (ТЕ-ПОСС) и с восемью эпоксидными группами – окта[(3-глицидилоксипропил) диметилсилокси]-ПСС (ПСС-Окта). Структурные формулы данных ПОСС приведены на рис. 2.

Синтез нанокомпозитов проводили по следующему режиму. На первой стадии ДЦБЕ тщательно смешивали с ПОСС на протяжении 40 мин при T = 120 °Cс целью создания условий для химического взаимодействия между эпоксидными группами ПОСС и цианатными группами формирующейся ПЦС-матрицы. Полученную преполимерную композицию помещали в форму с антиадгезионным покрытием. На второй стадии проводили отверждение образцов при нагревании от $T_{\text{нач}} = 120 \text{ °C}$ до $T_{\text{кон}} = 300 \text{ °C}$ в течение 5 ч. с последующей выдержкой полученных образцов нанокомпозитов при температуре 300 °С в течение 1 ч (доотверждение) с целью достижения максимальной конверсии цианатных групп. Содержание ПСС-ГГ, ТЕ-ПОСС и ПСС-Окта в синтезированных нанокомпозитах составляло 2, 5 и 10 % мас.

Стойкость к термической и термоокислительной деструкции нанокомпозитов на основе полицианурата и эпоксифункционализированных ПОСС исследовали с помощью метода ТГА в атмосфере азота или на воздухе соответственно, используя термогравиметрический анализатор "NETZSCH TG209" в интервале температур от 25 до 800 °С со скоростью нагрева 20 °С/мин.

Интегральную температуру процесса разложения (*IPDT*) рассчитывали по методу, предложенному Doyle в работе [25] по уравнению:

$$IPDT (^{\circ}C) = AK \cdot (T_{f} - T_{i}) + T_{i}, \qquad (1)$$

где: A и K – соотношения площадей полной экспериментальной кривой, определенной методом ТГА; T_i и T_f – начальная и конечная температуры эксперимента соответственно. A и K рассчитывали из уравнений (2 и 3):

$$A = (S_1 + S_2) / (S_1 + S_2 + S_3),$$
(2)

$$K = (S_1 + S_2) / S_1.$$
(3)

Площади S_1, S_2 и S_3 представлены на рис. 3.

Кажущуюся энергию активации основной стадии термической деструкции рассчитывали с использованием интегрального метода Бройдо [26] путем

Рис. 2. Структурные формулы эпоксифункционализированных полиэдральных олигомерных силсесквиоксанов: ПСС-ГГ (*a*); ТЕ-ПОСС (*б*) и Окта-ПСС (*в*)

Рис. 3. Схематическое представление областе
й S_1,S_2 и S_3 для вычисления Aи
 K в ИТПР

линеаризации зависимости $\ln[-\ln[(1 - \alpha)]$ от 1000/T по уравнению:

$$\ln[\ln(1 - \alpha)] = \frac{E_a}{RT} + \text{const} , \qquad (4)$$

где: а – степень конверсии образца в процессе дест-

рукции и равна $\frac{w_0 - w_t}{w_0 - w_\infty}$, а w_0 , w_t , w_8 – вес образца

перед деструкцией, в момент времени t и после полной деструкции, соответственно; E_a – энергия активации процесса, кДж/моль; T – температура, К; R – универсальная газовая постоянная (8,314 кДж/моль). Расчет E_a производили в максимумах кривых ДТГ.

Статистический индекс термостойкости (T_s) [27] был рассчитан из значений температуры потери 5 % массы (T_{n5}) и 30 % массы (T_{n30}) образца по уравнению: $T_s = 0,49 \cdot [(T_{d5} + 0.6 \cdot (T_{d30} - T_{d5})].$ (5)

Кажущуюся температуру разложения (T_A) и кажущийся индекс термостойкости (T_{zg}) рассчитывали из уравнений (6 и 7) соответственно:

$$T_{\rm A} = (10\rm{C} - 3\rm{B}) / 7,$$
 (6)

$$T_{zg} = (T_A + B) / 2x.$$
 (7)

где: параметры *B* и *Č* соответствуют температурам потери 50 % массы ($T_{д50}$) и 15 % массы ($T_{д15}$) соответственно [28]. Параметр x – это индекс функциональности. При содержании эпоксидных групп больше 50 %, параметр x эпоксидных соединений составляет 2,37. Однако, при содержании эпоксидных групп меньше 50 %, параметр x таких соединений равен 2,14 [29]. В нашей работе параметр x = 2,14, поскольку содержание эпоксигрупп меньше 50 %, а именно: доля эпоксидных групп для ПСС-ГГ составляет 4,49 для ТЕ-ПОСС

Рис. 4. Схема химических реакций в системе цианат-эпоксид при повышенных температурах

Рис. 5. Влияние содержания ПОСС (указано на графике) на стойкость к термической деструкции (кривые ТГА) синтезированных нанокомпозитов состава: ПЦС/ПСС-ГГ (*a*); ПЦС/ТЕ-ПОСС (б) и ПЦС/ ПСС-Окта (*в*)

- 9,26 и для ПСС-Окта – 17,81 %.

Результаты исследования и их обсуждение.

Формирование химической структуры нанокомпозита осуществляется за счет ранее исследованных на модельных и полимерных системах [30] реакций циклотримеризации органического цианата и взаимодействий цианата и продукта его циклотримеризации, цианурата с эпоксидным циклом (рис. 4).

В результате фрагменты эпоксифункционализированного ПОСС оказываются химически привитыми посредством линейных фрагментов, содержащих оксазолидиноновые пятичленные циклы, к трехмерной полициануратной сетке. Все описанные превращения подтверждены ранее на аналогичных системах методом ИК-спектроскопии [23].

На рис. 5 и 6 приведены данные ТГА для синтезированных ПЦС/ПОСС нанокомпозитов, а в табл. 1 и 2 суммированы соответствующие термические характеристики. Отличия результатов, полученных на воздухе и в атмосфере азота очевидны. Основные различия заключаются в том, что начиная с температуры ~500 °C в инертной атмосфере, уменьшение массы нанокомпозитов практически останавливается и коксовые остатки составляют от ~45 до 49 %, а на воздухе уже при температуре ~ 550 °C происходит практически их полное сгорание.

Коршак с соавторами [31] исследовали закономерности термической, термогидролитической и термоокислительной деструкции полициануратов в широком диапазоне температур. Установлено, что полицианураты разлагаются по двум конкурирующим механизмам - гетеролитическому и гомолитическому. В области температур 250-400 °С доминируют ионные реакции, катализируемые такими продуктами разложения полимеров как фенол и бисфенолы; выше 400 °С наблюдается увеличение скорости радикальных реакций. Как видно из рис. 5 и 6, термическое разложение ПЦ-сетки в инертной атмосфере проходит практически в одну стадию, в то время как термоокислительная деструкция является двухстадийным процессом. По-видимому, в присутствии кислорода образовавшиеся на первом этапе продукты деструкции и радикалы образуют промежуточные сетчатые фрагменты, которые деструктируют на втором этапе. Установлено [32], что присутствие влаги в полимерах оказывает существенное влияние на характер и глубину их разложения. Высказано предположение о том, что деструкция полициануратов

	Стадия 1				Стадия 2				
Композиция	<i>Т</i> _{д1нач} , °С	<i>Т</i> _{д1макс} , °С	<i>dm₁/dф</i> %/мин	$\Delta m_l,$ %	<i>Т</i> _{д2нач} , °С	<i>Т</i> _{д2макс} , °С	<i>dm2/dф</i> %/мин	$\Delta m_2,$ %	остаток, %
ПЦС	432	443	-12,0	26,4	525	543	-1,2	9,4	48,9
ПЦС/ПСС-ГГ(2%)	433	444	-10,9	24,8	522	543	-1,2	9,7	45,1
ПЦС/ПСС-ГГ (5%)	429	444	-9,9	25,3	514	537	-1,5	12,7	46,5
ПЦС/ПСС-ГГ (10%)	428	443	-9,1	24,8	513	536	-1,8	13,4	47,3
РСN/ТЕ-ПОСС (2%)	428	439	-11,5	27,3	511	562	-1,3	11,6	47,0
РСN/ТЕ-ПОСС (5%)	427	441	-10,7	28,5	513	534	-1,3	11,0	46,9
РСN/ТЕ-ПОСС (10%)	425	443	-9,5	29,9	513	535	-1,2	9,9	48,1
ПЦС/ПСС-Окта (2%)	430	442	-11,0	27,3	529	562	-1,3	9,9	47,6
ПЦС/ПСС-Окта (5%)	422	436	-10,0	29,2	520	561	-1,3	10,5	45,3
ПЦС/ПСС-Окта (10%)	412	432	-8,3	29,9	509	562	-1,3	11,3	47,1

Таблица 1. ТГА данные синтезированных нанокомпозитов на основе ПЦС/ПОСС (в атмосфере N₂)

начинается с гидролитического расщепления эфирной связи и сопровождается последующим распадом триазинового цикла. Фенол в продуктах разложения полициануратов может появиться только в результате гидролитического расщепления эфирной связи. Вместе с тем в ИК-спектрах образцов, пиролизованных при температуре 400–450 °C [32], наблюдалась полоса 1620 см⁻¹, характерная для сопряженных связей –C=N–, а также полоса 1730 см⁻¹, соответствующая колебаниям карбонильной группы изоциануратного цикла. При этом интенсивность первой полосы с увеличением температуры деструкции вплоть до 600 °C возрастает, а интенсивность полосы 1730 см⁻¹ сначала возрастает, а затем при температуре 500 °C

	Стадия 1				Стадия 2				Коксорий
Композиция	$T\partial I_{\mu a 4},$	$T\partial I_{\text{макс}},$	dm1/dф	Δm_1 ,	$T\partial 2_{\mu a 4},$	$T\partial 2_{\text{макс}},$	dm₂/d¢	Δm_2 ,	остаток %
	°C	°C	%/мин	%	°C	°C	%/мин	%	
ПЦС	434	441	-16,5	23,8	519	536	-13,4	54,9	0,3
ПЦС/ПСС-ГГ(2%)	429	437	-14,3	25,2	537	560	-11,0	52,1	2,0
ПЦС/ПСС-ГГ (5%)	429	438	-11,3	22,3	552	582	-10,0	47,8	5,9
ПЦС/ПСС-ГГ (10%)	427	438	-10,6	23,6	548	566	-20,5	47,9	5,1
ПЦС/ТЕ-ПОСС (2%)	429	437	-14,8	27,1	534	560	-10,2	53,1	1,9
ПЦС/ТЕ-ПОСС (5%)	428	437	-13,5	26,8	552	579	-10,3	50,2	2,8
ПЦС/ТЕ-ПОСС (10%)	422	434	-11,3	26,9	549	568	-14,3	46,4	3,2
ПЦС/ПСС-Окта (2%)	427	438	-12,3	28,8	553	572	-11,2	51,0	2,6
ПЦС/ПСС-Окта (5%)	421	434	-10,3	25,9	558	591	-9,2	47,3	4,8
ПЦС/ПСС-Окта (10%)	412	424	-9,2	26,5	545	561	-14,5	45,3	5,4

Таблица 2. ТГА данные синтезированных нанокомпозитов на основе ПЦС/ПОСС (на воздухе)

эта полоса исчезает. Предложена [32] схема (на примере одной группы) превращения циануратных циклов в изоциануратные:

При температурах ниже 400 °С существенных изменений в ИК-спектрах пленок полициануратов не наблюдается, что свидетельствует об очень незначительной термической деструкции, а выше 400 °С полоса триазинового цикла при 1570 см-1 быстро уменьшается, при этом полоса поглощения при 2280 см⁻¹, предположительно соответствующая изоцианату, увеличивается по интенсивности, достигая максимума при температуре 475 °C. Эта модель предполагает термическую дециклизацию цианурата в цианат наряду с термической изомеризацией цианата в изоцианат [33]. Установлено [32], что при температурах выше 475 °С полоса при 2280 см⁻¹ снова уменьшается, вероятно, вследствие удаления синильной кислоты (HOCN), обнаруженной с помощью газовой хроматографии и масс-спектрометрии. Общая модель деструкции цианурата включает в себя образование летучих соединений СО, СО,, НОСК и аммиака [32, 34, 35]. Установлено [33], что первая стадия процесса деструкции включает дециклизацию цианурата и перегруппировку цианата в изоцианат, который затем реагирует с влагой, образуя карбаматы. Карбаматы дальше гидролизуются в карбаминовую кислоту (неустойчивое промежуточное соединение), которая спонтанно распадается на СО, и аммиак. При температурах выше 440 °С начинается быстрая потеря массы, и интенсивность всех ИК-полос поглощения равномерно падает до тех пор, пока не остается только оптически черный коксовый остаток [36]. Анализ газовой фазы продуктов термической деструкции методом ИК-спектроскопии [33] показал отсутствие полос поглощения при 1570 и 1360 см⁻¹, свидетельствующее о том, что летучие продукты термодеструкции не содержат триазина. Однако циановая кислота и ее изомер изоциановая кислота присутствуют в летучих продуктах термодеструкции в интервале температур 435-450 °C, о чем свидетельствует появление дуплета при 2290 и 2250 см⁻¹ ОСN-групп. По ИК-спектрам обнаружены также фенолы, амины, изомочевины или производные меламина, метан, аммиак и диоксид углерода. Вполне возможно, что ранее исследователи не обнаружили фракции арилцианата, поскольку температура транспорта газа была слишком низкой для обеспечения летучести этих соединений.

Известно [2-6], что введение ПОСС в полимер

увеличивает термостойкость системы. В работах [29, 37] реакционноспособный ПОСС вводили в органический мономер, из которого формировали полимерную сетку, при этом ПОСС химически прививался к сетке за счет реакции образования оксазолидинонового цикла. В обеих работах отмечено некоторое снижение температуры начала первой стадии деструкции полимера. Такой факт, по-видимому, связан с более низкой термостойкостью оксазолидинонового цикла по сравнению с циануратным [38, 39]. Ранее Федорченко с соавторами [39] обнаружили, что термическая деструкция оксазолидиноновых циклов протекает с декарбоксилированием циклов и образованием сшитых структур сложного строения:

$$\begin{bmatrix} C_{e}H_{4}-O-CH_{2}-CH-CH_{2}\\ & & \\ &$$

Понятно, что введение полиэдральной структуры ПОСС в полимерную матрицу увеличивает устойчивость полученного нанокомпозита к повышенным температурам. Этот эффект наиболее заметно проявляется при исследовании устойчивости нанокомпозитов к термоокислительной деструкции. По-видимому, свободные радикалы и группы, образовавшиеся на первой стадии разложения ПЦ-сетки, в присутствии воздуха при высоких температурах могут взаимодействовать с фрагментами, образовавшимися после деструкции оксазолидиноновых циклов. При этом образуются более устойчивые структуры, что сдвигает температуру второй стадии разложения нанокомпозита в область более высоких температур. В результате формируются термостабильные структуры типа SiO₂C [40].

Вместе с тем видно, что термическое поведение ПЦС/ПОСС нанокомпозитов в зависимости от состава композиций отличается не очень существенно. Прежде всего, следует отметить, что характер термогравиметрических кривых не меняется при введении в ПЦС-матрицу наночастичек ПОСС, поскольку их вид, количество стадий аналогичны как и для образца индивидуального ПЦС.

На всех кривых ТГА наблюдается интенсивное падение массы образцов в области 420–470 °С, связанное с деструкцией углеродного скелета сетчатого полицианурата.

Из данных, приведенных в табл. 1, видно, что введение в ПЦС наночастичек ПСС-ГГ приводит к некоторому уменьшению потери массы на 1-й стадии термодеструкции (в инертной атмосфере) для всех полученных композиций, а при термоокислительной деструкции уменьшение потери массы на данной стадии характерно только для ПЦС/ПСС-ГГ состава 95/5 % мас. (табл. 2).

Композиция	Снижение скорост	Сдвиг $T_{д_{2макс}}$ на воздухе, °C	
	N ₂	O ₂	O ₂
ПЦС	-	-	0
ПЦС/ПСС-ГГ(2%)	9	13	+24
ПЦС/ПСС-ГГ (5%)	18	32	+46
ПЦС/ПСС-ГГ (10%)	24	36	+30
ПЦС/ТЕ-ПОСС (2%)	4	10	+24
ПЦС/ТЕ-ПОСС (5%)	11	18	+43
ПЦС/ТЕ-ПОСС (10%)	21	32	+32
ПЦС/ПСС-Окта (2%)	8	26	+36
ПЦС/ПСС-Окта (5%)	17	38	+55
ПЦС/ПСС-Окта (10%)	31	44	+25

Таблица 3. Кинетические параметры деструкции синтезированных нанокомпозитов ПЦС/ПОСС

*Снижение скорости деструкции нанокомпозитов (нк) в сравнении с индивидуальной ПЦС на 1-й стадии

рассчитано по формуле
$$\frac{(dm_1/d\tau)_{\Pi UC} - (dm_1/d\tau)_{HK}}{(dm_1/d\tau)_{\Pi UC}} \cdot 100\%$$

Поскольку используемые ПОСС содержат боковые заместители с эпоксидными группами, которые реагируют с цианатными группами ДЦБЕ, они тем самым ограничивают гомополимеризацию ПЦС, что может приводить к образованию олигомерных и гибридных структур, что, как показано в работе [41], может снижать термическую стабильность материла. Следует отметить, что для всех исследованных ПЦС/ПОСС нанокомпозитов температура начала деструкции на воздухе приблизительно на 5-10 °C ниже по сравнению с индивидуальной ПЦС. Как видно из рис. 6 и табл. 2, введение эпоксифункционализированных ПОСС в полицианурат приводит к существенному сдвигу процесса термоокислительной деструкции. При этом видно, что и потеря массы на этой стадии для нанокомпозитов ПЦС/ПОСС также меньше (на ~ 6-9 %) в сравнении с индивидуальной ПЦС. Установлено, что стойкость к термодеструкции исследованных образцов нанокомпозитов в меньшей степени зависит от содержания и типа ПОСС, в сравнении со стойкостью данных образцов к термоокислительной деструкции. Так, например, некоторое повышение величины Т_{л1мес} имеет место только для образца ПЦС/ПСС-ГГ = 98/2 % мас. (табл. 1). Однако, для всех нанокомпозитов также зафиксировано снижение скорости деструкции образцов $(dm_i/d\tau)$ по сравнению с ненаполненным ПЦС (табл. 2). При этом, чем выше содержание нанонаполнителя, тем ниже величина $dm/d\tau$. Наиболее существенно это проявляется в нанокомпозитах ПЦС/ПСС-Окта, где скорость потери массы на первой стадии снижается от ~11 %/мин для образца, содержащего 2 % мас. ПСС-Окта, до ~8 %/мин для образца состава ПЦС/ПСС-Окта = 90/10 % мас. В целом можно сделать вывод, что нанонаполнитель несущественно меняет термостойкость (в атмосфере азота) данных нанокомпозитов на основе полициануратов,

Таблица 4. Параметры термодеструкции нанокомпозитов на основе ПЦС/ПОСС

Компориция	В	атмосфере	N 2	В атмосфере О ₂			
Композиция	$T_{\rm s}$, °C	T _A , °C	T_{zg} , °C	$T_{\rm s}$, °C	$T_{\rm A}$, °C	T_{zg} , °C	<i>IPDT</i> , ℃
ПЦС	224,8	304,3	251,0	220,6	402,7	217,2	507,76
ПЦС/ПСС-ГГ(2%)	224,8	331,3	242,6	220,2	392,6	218,8	538,90
ПЦС/ПСС-ГГ (5%)	224,5	312,4	248,5	222,8	388,0	221,0	587,33
ПЦС/ПСС-ГГ (10%)	223,0	348,0	235,0	221,0	392,1	219,0	565,52
ПЦС/ТЕ-ПОСС (2%)	219,9	337,0	236,9	219,5	392,1	219,0	540,30
ПЦС/ТЕ-ПОСС (5%)	219,8	340,1	236,7	218,8	387,0	220,6	554,88
ПЦС/ТЕ-ПОСС (10%)	218,6	327,1	240,0	214,0	382,7	217,2	542,47
ПЦС/ПСС-Окта (2%)	219,7	338,1	238,1	218,2	386,1	220,8	553,77
ПЦС/ПСС-Окта (5%)	216,5	345,3	230,4	213,8	376,6	218,4	572,72
ПЦС/ПСС-Окта (10%)	214,9	331,4	231,6	211,9	372,6	214,2	560,71

возможно потому, что полицианураты имеют собственную присущую им высокую термостабильность.

В атмосфере азота значения величин коксового остатка для всех ПЦС/ПОСС нанокомпозитов (табл. 1) несколько ниже, чем у индивидуальной ПЦС. Тогда как коксовый остаток при термоокислительной деструкции нанокомпозитов выше на ~ 2-6 % в сравнении с индивидуальной ПЦС (табл. 1). Это согласуется с результатами работы [42], где было показано, что при разложении на воздухе ПОСС могут образовывать термически стабильные соединения SiOx и повышать коксовый остаток нанокомпозитов. Увеличение коксового остатка приводит к уменьшению содержания горючих газов, выделяющихся в процессе термической деструкции, что может свидетельствовать о повышении огнестойкости. Кроме того, о повышении огнестойкости свидетельствует снижение величины скорости потери массы образцами на первой стадии деструкции на воздухе в области температур 410-470 °С и сдвиг температуры максимальной скорости потери массы на второй стадии деструкции до ~ 44 °С (рис. 9). Как видно из табл. 3, для всех нанокомпозитов как в атмосфере азота, так и на воздухе наблюдается закономерное снижение скорости деструкции на 1-й стадии с увеличением содержания в них эпокси-ПОСС. При этом наиболее сильное влияние проявляется в нанокомпозитах на основе ПЦС/ПСС-Окта (с максимальным количеством эпоксидных групп). Этот эффект выражен более явно в условиях термоокислительной деструкции. Видно также, что максимальный сдвиг $T_{_{\rm д2макс}}$ на воздухе проявляется при содержании 5 % мас. всех эпокси-ПОСС. Возможно, что при эффективном диспергировании наночастиц ПОСС в ПЦС матрице увеличение содержания ПОСС от 2 до 5 % мас. приводит к более сильному влиянию на температуру максимальной скорости потери массы на второй стадии термоокислительной деструкции $(T_{n^{2}_{\text{макс}}})$ на воздухе; введение же такого большого количества нанонаполнителя как 10 % мас. не обеспечивает его эффективного диспергирования в полимерной матрице, что снижает его влияние на $T_{_{\rm л2макс}}$ на воздухе.

В табл. 4 представлены параметры, которые характеризуют термическую и термоокислительную деструкцию, такие как статистический индекс термостойкости (*IPDT*), кажущуаяся температура разложения (T_s), индекс термостойкости (T_A) и интегральная температура процесса разложения (T_{zg}). Отметим, что параметр *IPDT* не рассчитывался для образцов при их термической деструкции, поскольку, как отмечено в работе [25], для полимеров с высоким содержанием коксового остатка *IPDT* теряет физический смысл. Видно, что параметры T_s , T_A , T_{zg} для всех ПЦС/ПОСС нанокомпозитов ниже, чем у индивидуальной ПЦС, причем, эта зависимость пропорциональна содержанию функциональных групп в нанонаполнителе, т. е. чем больше количество эпоксидных групп в ПОСС, тем ниже значения указанных параметров, причем, эта тенденция сохраняется как в атмосфере азота, так и на воздухе. В работе [28] авторы объясняют такое снижение параметров T_s , T_A и T_{zg} снижением общей степени сшивки системы. В нашем случае образование оксазолидиноновых фрагментов (рис. 4) при формировании ПЦС/ПОСС нанокомпозитов приводит к увеличению содержания линейных фрагментов в полимерной матрице, что, естественно, снижает степень ее сшивки в сравнении с индивидуальной ПЦС. Из табл. 4 также видно, что значения *IPDT* для всех ПЦС/ПОСС нанокомпозитов выше, чем для индивидуальной ПЦС, что свидетельствует об образовании коксового остатка диоксида кремния [43].

Поскольку при расчетах по методу Бройдо процесс пиролиза принимается как реакция первого порядка, а в нашем случае при термодеструкции в атмосфере кислорода возможны химические реакции между компонентами пиролиза, как было указано выше, эти расчеты кажущейся энергии активации проводили только для термодеструкции исследованных образцов в инертной атмосфере. На рис. 7 представлены зависимости $\ln[-\ln[(1 - \alpha)]$ от 1000/*T*, рассчитанные по методу Бройдо, на примере индивидуального ПЦС и синтезированных ПЦС/ПСС-Окта нанокомпозитов (для всех других серий нанокомпозитов наблюдаются аналогичные зависимости), а в табл. 5 приведены значения кажущейся энергии активации (Е) и коэффициент корреляции (R²) основной стадии деструкции всех исследуемых нанокомпозитов на основе ПЦС/ПОСС. Следует отметить, что во всех случаях величина R² превышала 0,99. Как видно из табл. 5, значения Е исследованных образцов составляют от 353,6 до 606,3 кДж/моль в атмосфере азота. Обнаружено, что для всех нанокомпозитов величины Е, меньше в сравнении с

Рис. 7. Типичные зависимости lnln[*Wo*/(*Wo*-*W*)]) от 1000/*T*, расчитанные по методу Бройдо на примере индивидуального ПЦС и синтезированных ПЦС/ПСС-Окта нанокомпозитов

Композиция	<i>b</i> *	<i>Е</i> _{<i>a</i>} , кДж/моль	R^2	
ПЦС	-72,963	606,3	0,9929	
ПЦС/ПСС-ГГ(2%)	-67,825	563,6	0,9952	
ПЦС/ПСС-ГГ (5%)	-65,868	547,4	0,9952	
ПЦС/ПСС-ГГ (10%)	-52,513	436,4	0,9976	
ПЦС/ТЕ-ПОСС (2%)	-65,161	541,5	0,9944	
ПЦС/ТЕ-ПОСС (5%)	-59,907	497,8	0,9971	
ПЦС/ТЕ-ПОСС (10%)	-44,943	373,5	0,9982	
ПЦС/ПСС-Окта (2%)	-64,487	535,9	0,9960	
ПЦС/ПСС-Окта (5%)	-52,701	437,9	0,9965	
ПЦС/ПСС-Окта (10%)	-42,553	353,6	0,9988	

Таблица 5. Кажущаяся энергия активации основной стадии термической деструкции нанокомпозитов на основе ПЦС/ПОСС

 $b = -E_{a}/R$

индивидуальной ПЦС, при этом, чем больше содержание ПОСС в системе, тем ниже значения E_a ; более того, чем выше содержание эпоксидных групп в самом нанонаполнителе, тем существеннее разница величин Е в сравнении с индивидуальным полициануратом. Это может свидетельствовать о том, что чем больше количество эпоксидных групп в начальной реакционной смеси, тем больше образуется оксазолидиноновых циклов, которые легче (быстрее) деструктируют в процессе пиролиза в сравнении с циануратными фрагментами. С другой стороны, в процессе синтеза ПЦС в присутствии епоксифункционализированных ПОСС образуется гибридная сетчатая структура с включениями ПОСС, менее регулярная и более рыхлая по сравнению с регулярной густосшитой ПЦС, поэтому и энергии для разрушения более упорядоченной структуры индивидуальной ПЦС необходимо больше в сравнении с ПЦС/ПОСС нанокомпозитами.

Влияние количества эпоксидных функциональных групп в нанонаполнителе на стойкость к термической и термоокислительной деструкции нанокомпозитов ПЦС/ПОСС показано на рис. 8 и 9 соответственно.

Видно, что поведение нанокомпозитов при термической деструкции (рис. 8) практически не зависит от типа ПОСС и количества в нем эпоксидных групп в сравнении с индивидуальной ПЦС. Однако, из рис. 9 видно, что для всех концентраций ПОСС в ПЦС-матрице наблюдается уменьшение потери массы на второй стадии термоокислительной деструкции пропорционально количеству эпоксидных групп нанонаполнителя, а именно: с увеличением количества эпоксидных групп, химически встраиваемых в ПЦ-сетку, уменьшается потеря массы синтезированных нанокомпозитов. Можно сделать вывод, что увеличение концентрации эпоксидных групп в ПОСС, с одной стороны, приводит к их более высокой степени встраивания в формирующуюся в их присутствии ПЦ-сетку, однако, с другой стороны, это увеличивает дефектность ПЦ-сетки. Следует отметить, что все синтезированные ПЦС/ПОСС нанокомпозиты можно отнести к классу термостойких материалов.

Таким образом, методом *in situ* реакционного формования синтезированы и исследованы новые органо-неорганические нанокомпозиты на основе термостойких полициануратных сеток (ПЦС) и

Рис. 8. Влияние ПОСС, содержащих разное количество эпоксидных групп (указано на графике), на стойкость к термической деструкции (дифференциальные кривые ТГА) ПЦС/ПОСС нанокомпозитов состава: 98/2 (*a*); 95/5 (б) и 90/10 % мас. (*в*)

Рис. 9. Влияние ПОСС, содержащих разное количество эпоксидных групп (указано на графике), на стойкость к термоокислительной деструкции (дифференциальные кривые ТГА) ПЦС/ПОСС нанокомпозитов состава: 98/2 (*a*); 95/5 (б) и 90/10 % мас. (в)

эпоксифункционализированных полиэдральных олигомерных силсеквиоксанов (ПОСС), содержащих разное количество эпоксидных групп. Методом ТГА установлено влияние содержания и типа нанонаполнителя на термическую стойкость и стойкость к термоокислительной деструкции синтезированных нанокомпозитов.

Установлено, что химическая прививка частиц ПОСС к ПЦС осуществляется через образование линейных фрагментов полимерной цепи, что приводит к снижению густоты сетки. Очевидно, что термическая стабильность полученного нанокомпозита является результатом конкурирующего влияния введения в систему термостойких неорганических частиц нанонаполнителя и образования линейных фрагментов

Литература

1. *Kickelbick G.* // Progr. Polym. Sci. – 2003. – **28**, No. 1. – P. 83-114.

2. Frye C.L., Collins W.T. // J. Americ. Chem. Soc. – 1970. – 92, No. 19. – P. 5586-5588.

3. *Liu Y., Zheng S., Nie K. //* Polymer. – 2005. – **46**, No. 25. – P. 12016-12025.

4. *Choi J., Yee A.F., Laine R.M.* // Macromolecules. – 2003. – **36**, No.15. – P. 5666-5682.

5. *Joshi M., Butola B.S.* // J. Macromol. Sci. Part C., Polym. Rev. – 2004. – **44**, No. 4. – P. 389-410.

6. *Schwab J.J., Lichtenhan J.D.* // Appl. Organomet. Chem. – 1998. – **12**, No.10-11. – P. 707-713.

7. *Abe Y., Gunji T. //* Progr. Polym. Sci. – 2004. – **29**, No. 3. – P. 149-182.

8. *Терещенко Т.А., Шевчук А.В., Шевченко В.В. //* Полімер. журн. – 2005. – **27**, № 1. – С. 3-12.

9. Гуменная М.А., Шевчук А.В., Бойчук В.В., Клименко Н.С. // Доп. НАН України. – 2007. – № 10.– С. 128– 134.

10. *Phillipps S.H., Haddad T.S., Tomczak S.J. //* Curr. Opin. Solid St. M. – 2004. – **8**, No. 1. – P. 21 – 29.

11. Zucchi I.A., Galante M.J., Williams R.J.J. //

полимера, увеличивающих межузловые расстояния в полимере и, соответственно, снижающих степень сшивки. Обнаружено увеличение коксового остатка, снижение скорости потери массы образцами на первой стадии деструкции на воздухе в области температур 410—470 °С и повышение температуры максимальной скорости потери массы на второй стадии деструкции до ~ 44 °C, что дает возможность сделать предположение о повышении огнестойкости полученных нанокомпозитов в сравнении с индивидуальной ПЦС.

Авторы выражают искреннюю благодарность за частичную финансовую поддержку данной работы в рамках проекта международного сотрудничества CNRS (France) – НАНУ (Украина) № 24005 (2010-2011).

Macromolecules. – 2007. – **40**, No. 4. – P. 1274-1282. 12. *Chen Q., Xu R., Zhang J. //* Macromol. Rapid Com. – 2005. – **26**, No. 23. – P. 1878-1882.

13. *Fainleib A*. Thermostable polycyanurates: synthesis, modification, structure and properties. – New York: Nova Science Publishers Inc., 2010. – 362 p.

14. *Liang K., Li G., Toghiani H., Koo J.H., Pittman C.U., Jr. //* Chem. Mater. – 2006. – **18**, No. 2. – P. 301-312.

15. Cho H.-S., Liang K., Chatterjee S., Pittman C.U., Jr. //

J. Inorg. Organometal. Polym. Mater. – 2005. – 15, No. 4. – P. 541-553.

16. *Pittman C.U. Jr., Li G.-Z., Ni H. //* Macromol. Symp. – 2003. – **196**. – P. 301-325.

17. *Liang K., Toghiani H., Pittman C.U. Jr.* // J. Inorg. Organomet. Polym. – 2011. – **21**, No. 1. – P. 128–142.

18. *Liang K., Toghiani H., Li G., Pittman C.U. Jr.* // J. Polym. Sci.: Part A: Polym. Chem. – 2005. – **43**, No. 17. – P. 3887–3898.

19. Wright M. E., Petteys B.J., Guenthner A.J., Yandek G.R., Baldwin L.C., Jones C., Roberts M.J. // Macromolecules – 2007. – **40**, No. 11. – P. 3891-3894.

20. Lin Y., Jin J., Song M., Shaw S.J., Stone C.A. // Polymer.

- 2011. - **52**, No. 8. - 1716-1724.

21. *Ma J., Li Q. //* Adv. Mater. Res. – 2006. – **11-12**. – P. 323-326.

22. Lu T., Liang G., Guo Z. // J. Appl. Polym. Sci. – 2006. – 101. – P. 3652–3658.

23. Starostenko O., Bershtein V., Fainleib A., Egorova L., Grigoryeva O., Sinani A., Yakushev P.// Macromol. Symp. – 2012. – **316**, No. 1. – P. 90-96.

24. Бардаш Л.В., Файнлейб О.М. // Полімер. журн. – 2010. – **32**, №4. – С. 287–298.

25. *Doyle C.D.* // Anal.Chem. – 1961. – **33**, No.1. – P. 77-79.

26. *Broido A.A.* // J. Polym. Sci., Part A. – 1969. – 7, No. 2. – P.1761-1773.

27. *Horowitz H.H., Metzger G. //* Anal. Chem. – 1963. – **35**, No. 10. – P. 1464-1468.

28. Fu J., Shi L., Chen Y., Yuan Sh., Wu J., Liang X., Zhong Q. // J. Appl. Polym. Sci. – 2008. – **109**, No. 1. – P. 340–349.

29. *Chiu Y.-C., Tsai H.-C., Imae T. //* J. Appl. Polym. Sci. – 2012. – **124**, No. 2. – P. 1234-1240.

30. Seminovych G.M., Fainleib A.M., Slinchenko E.A., Brovko A.A., Sergeeva L.M., Dubkova V.I. // React. Funct. Polym. – 1999. – **40**. – P. 281-288.

31. Коршак В.В., Павлова С.-С.А., Грибкова П.Н., Циргиладзе М.В., Панкратов В.А., Виноградова С.В. // Высокомолекуляр. соединения. Сер. А. – 1980. – **22**, №. – С. 1714-1722.

32. Коршак В.В., Грибкова П.Н., Дмитренко А.В.,

Пучин А.Г., Панкратов В.А., Виноградова С.В. // Высокомолекуляр. соединения. Сер. А. – 1974. – **16**, №1. – С. 15-21.

33. *Ramirez M.L., Walters R., Lyon R.E., Savitski E.P. //* Polym. Degr. Stab. – 2002. – **78**. – P. 73–82.

34. *Shimp D.A., Ising S.J.* Proceedings American Chemical Society National Meeting PMSE Division, April 1992. – San Francisco, CA. Washington (DC): ACS Press.

35. Politou A.S., Morterra C., Low M.J.D. // Carbon. – 1990. – 28, No. 4. – P.529–538.

36. *Smolin E.M., Rapoport L.* The chemistry of heterocyclic compounds. – New York: Interscience, 1959. – Vol. 13. – P. 17-48.

37. Файнлейб А.М., Шанталий Т.А., Панкратов В.А. // Композиц. полимер. материалы. – 1991. – **49**, №. – С. 39-53.

38. Файнлейб А.М., Сергеева Л.М., Шанталий Т.А. // Пласт. массы. – 1995. – N1. – С. 16-18.

39. Федорченко Е.И., Голубев А.В., Пазенко З.Н., Корнев К.А. Синтез и физикохимия полимеров. Респ. межвед. сб. – Киев: Наук. думка, 1973. - Вып. 11. – 132 с.

40. *Song L., He Q., Hu Y., Chen H., Liu L.* // Polym. Degr. Stab. – 2008. – **93**. – P. 627-639.

41. *Tamaki R., Choi J., Laine R.M.* // Chem. Mater. – 2003. – **15**, No. 3. – P. 793-797.

42. *Fina A., Tabuani D., Carniato F., Frache A., Boccaleri E., Camino G. //* Thermochimica Acta. – 2006. – 440, No. 1. – P. 36–42.

Поступила в редакцию 26 ноября 2013 г.

Вплив епоксифункціоналізованих ПОСС на термостійкість нанокомпозитів на основі сітчастих поліціануратів

О.М. Старостенко¹, О.П. Григор'єва¹, О.М. Файнлейб¹, J.-M. Saiter², B. Youssef^{2,3}, D. Grande⁴

¹Інститут хімії високомолекулярних сполук НАН України 48, Харківське шосе, Київ, 02160, Україна ² AMME-LECAP International Lab EA 4528 Universite de Rouen 76801 St. Et. du Rouvray, France ³ INSA de Rouen, BP 08 Av. de l'Universite 76801, Saint Etienne du Rouvray, France ⁴ Institut de Chimie et des Materiaux Paris-Est, UMR 7182 CNRS – Universite Paris Est Val-de-Marne 2-8, rue Henri Dunant, 94320 Thiais, France

> Методом in situ реакційного формування синтезовано та досліджено нові органо-неорганічні нанокомпозити на основі термостійких поліціануратних сіток (ПЦС) та епоксифункціоналізованих поліедральних олігомерних силсесквіоксанів (ПОСС), що містять різну кількість епоксидних груп. Методом термогравіметричного аналізу (ТГА) досліджено вплив вмісту та типу нанонаповнювача на термічну стійкість і стійкість до термоокиснювальної деструкції синтезованих нанокомпозитів. Встановлено, що залежно від вмісту і типу нанонаповнювача змінюється стійкість ПЦС/ПОСС нанокомпозитів до термічної та термоокиснювальної деструкції. Для більшості синтезованих нанокомпозитів виявлено гальмування процесів термічної та термоокиснювальної деструкції в області температур нижче 470 °С, що дало можливість зробити висновок про покращення вогнестійкості плівкових матеріалів.

Ключові слова: *in situ* реакційне формування, полімерні нанокомпозити, термостійкі поліціанурати, епоксифункціоналізовані ПОСС, термостійкість.

Effect of epoxy functionalized POSS on thermal stability of polycyanurate based nanocomposites

O.N. Starostenko¹, O.P. Grigoryeva¹, A.M. Fainleib¹, J.-M. Saiter², B. Youssef^{2,3}, D. Grande⁴

¹Institute of Macromolecular Chemistry NAS of Ukraine
⁴⁸, Kharkivske shose, 02160 Kyiv, Ukraine
²AMME-LECAP International Lab EA 4528 Universite de Rouen
⁷⁶⁸⁰¹ St. Et. du Rouvray, France
³INSA de Rouen, BP 08 Av. de l'Universite
⁷⁶⁸⁰¹, Saint Etienne du Rouvray, France
⁴Institut de Chimie et des Materiaux Paris-Est, UMR 7182 CNRS – Universite Paris Est Val-de-Marne
²-8, rue Henri Dunant, 94320 Thiais, France

Novel organic-inorganic nanocomposites based on thermostable polycyanurate networks (PCNs) and epoxy functionalized polyhedral oligomeric silsesquioxanes (POSS) with different content of epoxy groups were synthesized by the in situ formation and characterized. The influence of nanofiller's content and type on thermal and thermal oxidative stability of nanocomposites prepared have been studied using thermal gravimetric analysis (TGA). It was found, that thermal and thermal oxidative stability of PCN/POSS nanocomposites varies depending on the content and type of nanofiller. The inhibition of thermal and thermo-oxidative degradation at temperatures < 470 °C for most nanocomposites synthesized and improvement of fire resistance of film materials have been established.

Keywords: *in situ* reactive formation, polymer nanocomposites, thermostable polycyanurates, епоксифункціоналізовані POSS, thermal stability.