УДК 544.7

Фізико-хімічне дослідження кремнезему, модифікованого гепарином, для створення нових систем доставки лікарських засобів

Л.Р Азізова¹, Т.В. Кулик¹, Б.Б. Паляниця¹, К. Ласло², А. Менихард²

¹Інститут хімії поверхні ім. О.О. Чуйка НАН України

17, вул. Генерала Наумова, Київ, 03164, Україна

²Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics

H-1521 Budapest, Hungary

Методами термопрограмованої десорбційної мас-спектрометрії (ТПД-МС), ІЧ-спектроскопії, термогравіметрії та фотон-кореляційної спектроскопії досліджений зразок кремнезему, модифікованого гепарином. Ідентифіковано стадії і продукти термолізу гепарину в конденсованому стані та на поверхні кремнезему. СЕМ-знімки та аналіз розподілу частинок за розмірами показав, що модифікування кремнезему гепарином призводить до руйнування агрегатів частинок кремнезему, зменшення діаметра частинок і більш вузького розподілу їх частинок за розмірами. При цьому головна фракція частинок залишається у формі агрегатів з d_{фкс} між 50 і 500 нм.

Ключові слова: гепарин, кремнезем, термопрограмована десорбційна мас-спектрометрія (ТПД-МС), фотонкореляційна спектроскопія, скануюча електронна мікроскопія.

Вступ.

Гепарин – це лінійний нерозгалужений глікозаміноглікан, який складається з двох дисахаридних ланок, що повторюються. Одна ланка складається з 2-сульфо-L-ідуронової кислоти та 2-дезокси-2-сульфамідо-6-О-сульфо-Д-глюкози. Друга ланка – дисахарид Д-глюкуронової кислоти та 2-дезокси-2-сульфамідо-6-Осульфо-*D*-глюкози (схема 1). Більшість аміногруп у залишках глюкозаміну наявні в *N*-сульфатованій формі, але є невелика кількість ацетильованих аміногруп і тільки близько 10 % перебувають у вільному стані. Через свій високий негативний заряд, зумовлений залишками ідуронової кислоти та сульфогрупами, гепарин інтенсивно взаємодіє з деякими компонентами плазми крові [1]. Він специфічно зв'язує фактори згортання крові IX і XI, таким чином зумовлюючи антикоагулюючу дію. Однак, більш важлива для антикоагулянтної активності гепарину його здатність взаємодіяти з α,-глікопротеїном плазми, який називається антитромбіном III [1].

Крім того, гепарин бере участь у багатьох біологічних процесах, зокрема, у клітинному розпізнаванні, сигнальній трансдукції, процесах росту та клітинній взаємодії факторів росту, які мають практичне значення при створенні нових лікарських препаратів. У медичній практиці гепарин використовують для лікування тромбозів, опікової хвороби, серцево-судинних захворювань, а також як стабілізатор крові під час переливання [2]. Однак, застосування гепарину в медичній практиці поряд з очевидними перевагами має ряд недоліків, а саме: кровотеча, остеопороз, тромбоцитопенія, некроз, дуже короткий період напіврозкладу гепарину в організмі [3-5]. Незважаючи на всі побічні дії, досі не існує альтернативи для гепарину. Фармакокінетика та фармакодинаміка гепарину можуть бути покращені за рахунок його іммобілізації на поверхні твердого носія, що може зменшити швидкість його метаболічного розкладу [6-8].

Наночастинки широко використовуються в медицині в системах доставки лікарських препаратів, імплантах і зондах [7]. Біосумісність з кров'ю – основна вимога для наноматеріалів, що контактуватимуть з кров'ю при клінічному використанні. Вірогідно, гепарин, іммобілізований на поверхні, підвищує тромборезистентність поверхні. Матеріали з нанесеним на поверхню гепарином мають високу біосумісність і пролонговану активність [6, 9].

Пірогенний кремнезем широко застосовується в медичній практиці як сорбент, компонент різноманітних композитів і носій лікарських препаратів [10]. Саме тому поєднання унікальних властивостей гепарину та кремнезему покращить ефективність кремнезему в системах доставки лікарських засобів як носія, а також може значно підвищити його біосумісність і, зокрема, з кров'ю [11, 12].

З метою створення фундаментальних основ для розробки нових систем для доставки лікарських засобів досліджено вплив гепарину на структурні характеристики модифікованих зразків методами фотонкореляційної спектроскопії (ФКС), скануючої електронної мікроскопії (СЕМ) та проведено порівняльний аналіз термічного розкладу гепарину в конденсованому стані та на поверхні кремнезему за допомогою методів термопрограмованої десорбційної мас-спектрометрії (ТПД-МС) і термогравіметрії.

Експериментальна частина.

У роботі були використані високодисперсний кремнезем (ВДК, питома поверхня 270 м²/г) виробництва Калуського дослідно-експериментального заводу ІХП ім. О.О. Чуйка НАН України (ГОСТ 14922-77) і натрієва сіль гепарину (або натрієва сіль 6-[5-ацетамідо-4,6-дигідрокси-2-(сульфооксиметил)оксан-3-іл]окси-3-[5-(6-карбокси-4,5-дигідрокси-3-сульфооксиоксан-2-іл)окси-6-(гідроксиметил)-3-(сульфаміно)-4сульфооксиоксан-2-іл]окси-4-гідрокси-5-сульфооксиоксан-2-карбонової кислоти) (Sigma-Aldrich, США). В експериментах були використані зразки кремнезему, модифікованого гепарином методом просочування водним розчином (0,6 ммоль/г) і зразки гепарину, адсорбованого на поверхні кремнезему з водного розчину за умов рівноважної адсорбції (~35 мг/г з розчину з визначеною концентрацією гепарину С =3 мг/мл за даними ДТГ).

ТПД МС дослідження проводили на монопольному мас-спектрометрі МХ-7304А (Суми, Україна) з іонізацією електронним ударом, переобладнаному для проведення термодесорбційних вимірювань, за методикою, описаною в роботах [13–15].

ІЧ-спектри реєстрували за кімнатної температури на спектрометрі FT-IR NEXUS (Thermo Nicolet) у діапазоні частот 4000–400 см⁻¹ на приставці для запису спектрів дифузного відбиття/пропускання з роздільною здатністю 8 см⁻¹, швидкістю сканування 0,5 см/с і кількістю сканувань 50. Для отримання ІЧ-спектрів дифузного відбиття зразки змішували зі свіжопрожареним і розтертим в агатовій ступці КВг за вагового співвідношення 1:5.

Термічний розклад гепарину на поверхні кремнезему проводили на приладі Thermogravimetric analyzer TGA-6 (PerkinElmer, USA) в атмосфері кисню (швидкість газу дорівнювала 20 см³/хв.). Нагрівання зразків проводили в діапазоні температур 30–700 °C зі швидкістю 10 °C/хв. Маса наважок становила приблизно 20 мг.

Аналіз розподілу частинок за розмірами проводили на приладі Malvern Zetasizer 3000 (Malvern Instruments, Великобританія) за λ =633 нм, θ =90° і 25 °C. Для отримання суспензії кремнезему (C_{si02} =0,0625%) в 10⁻³ М розчині NaCl попередньо проводили ультразвукову обробку зразка за допомогою ультразвукового диспергатора за частоти 25 кГц протягом 1 год. Стандартне програмне забезпечення Malvern Instruments (version 1.52) використовували для обробки результатів дослідження.

СЕМ-знімки морфології поверхні зразків кремнезему та кремнезему, модифікованого гепарином, отримали за допомогою скануючого електронного мікроскопа Hitachi S4800 (Токіо, Японія). СЕМ-знімки були отримані для зразків кремнезему після контакту з водою та кремнезему, модифікованого гепарином методом просочування. Зразки були висушені на повітрі за кімнатної температури. Для дослідження методом СЕМ зразки напилювали паладієм (Polaron SCT 640) з метою покращення роздільної здатності. Результати дослідження та їх обговорення.

Було проведено аналіз розподілу частинок кремнезему, модифікованого гепарином, методом фотонкореляційної спектроскопії. Для визначення розподілу частинок за розмірами за допомогою програмного забезпечення компанії Malvern (версії 1.3) припускали, що частинки мають сферичну форму.

Розрізняють декілька структур у процесі агрегації частинок пірогенного кремнезему. Первинні частинки кремнезему (мікроглобули), розміром 5÷20 нм, за літературними даними [16, 17] побудовані зі ще дрібніших, так званих проточастинок. Первинні частинки утворюють поруваті агрегати з розміром частинок приблизно 50–200 нм. Агрегати конденсуються в агломерати (>1 мкм), які здатні об'єднуватися в конгломерати (~1÷3 мм).

За наявності гепарину, яким було модифіковано поверхню кремнезему, маленькі агрегати дають найбільший внесок у розподіл частинок за розмірами завдяки розпаду агломератів і великих агрегатів частинок кремнезему під дією молекул полімеру (рис. 1). Відомо, що агрегати частинок кремнезему, залежно від умов (природа дисперсійного середовища, ультразвукова або механічна обробка тощо), розпадаються з утворенням нових структур, які можуть впливати на адсорбційну взаємодію з поверхнею кремнезему [17]. Модифікування кремнезему гепарином приводить до руйнування агрегатів частинок кремнезему, зменшення діаметра частинок і більш вузького розподілу їх за розмірами. Треба відзначити, що в цьому випадку діаметр частинок, що вимірюється ($d_{\phi xc}$), більший за реальний діаметр. У розведених суспензіях спостерігається

Рис. 1. Криві розподілу за розмірами для кремнезему (1) і кремнезему, модифікованого гепарином (0,6 ммоль/г) (2) (*C*=0,0625 %, *a* – за інтенсивністю розсіяння світла агрегатами; *б*, *в* – за розмірами і кількістю фракції агрегатів)

часткова коагуляція агрегатів до частинок з $d_{\phi \kappa}$ 1 μ м. Але головна фракція частинок залишається у формі агрегатів з $d_{\phi \kappa}$ між 50 і 500 нм.

За умов проведення досліджень за допомогою ФКС pH суспензій становило ~6. Відомо, що поверхня кремнезему за такого pH заряджена негативно (силанольні групи на поверхні кремнезему мають pKa= 6 [18]), полімер також має негативний заряд (карбоксильні групи гепарину мають pKa~3,3; *O*-сульфо та *N*-сульфо мають pKa~1,0-1,5 [19]). Це зумовлює дезагрегацію частинок і розпад агрегатів за рахунок відштовхування негативно заряджених полімеру та частинок кремнезему.

Поверхня зразка кремнезему, модифікованого гепарином, була досліджена методом СЕМ (рис. 2). 3 рисунка видно, що розмір агрегатів кремнезему зменшується після модифікування його гепарином. Дані, отримані за допомогою скануючої електронної мікроскопії, узгоджуються з кривими розподілу частинок за розмірами. 3 рис. 2 видно, що для немодифікованого зразка кремнезему основний розмір частинок становить ~50 нм, а також спостерігаються агломерати. Основний розмір частинок кремнезему, модифікованого гепарином, становить ~25 нм.

В ІЧ-спектрі гепарину (рис. 3) в області 4000– 3000 см⁻¹ спостерігаються смуги поглинання валентних коливань зв'язку О–Н, симетричних та асиметричних валентних коливань зв'язку N–H. У діапазоні 3000–2800 см⁻¹ наявні смуги поглинання валентних симетричних та асиметричних коливань зв'язку С–Н у групі СН₂. У діапазоні 1700–1600 см⁻¹ наявна смуга поглинання асиметричних валентних коливань іонізованої карбоксильної групи (1605 см⁻¹, СОО⁻) та смуга амід I (1659 см⁻¹). Ці смуги поглинання маскуються поглинанням кремнеземної матриці, а тому відсутні в ІЧ-спектрі зразка кремнезему, модифікованого гепарином.

Смуга поглинання 1420 см⁻¹ належить до валентних симетричних коливань іонізованої карбоксильної групи (СОО⁻). В ІЧ-спектрі зразка кремнезему, модифікованого гепарином, також спостерігається ця смуга поглинання (рис. 3). В області 1400–1200 см⁻¹ наявні

Рис. 2. СЕМ-знімки поверхні зразка кремнезему (a) та кремнезему, модифікованого гепарином (0,6 ммоль/г) (δ)

Рис. 3. ІЧ-спектри: гепарину (1); гепарину, нанесеного на поверхню кремнезему методом просочування (2) (0,6 ммоль/г) і кремнезему (3)

смуги поглинання в результаті накладання смуг поглинання деформаційних коливаннь зв'язків N–H та асиметричних валентних коливань зв'язку S=O, які відсутні в спектрі гепарину, закріпленого на поверхні кремнезему.

Термічний розклад гепарину в конденсованому стані відбувається у двох температурних діапазонах: 150–400 °С та вище 600 °С (рис. 4).

При цьому можна виділити три стадії термолізу. Перша стадія термолізу з $T_{\text{макс}}$ ~200 °С відбувається у вузькому температурному діапазоні (рис. 4). Перша та друга стадії розкладу гепарину в конденсованому стані відбуваються з декарбоксилюванням (CO₂, *m/z* 44), відщепленням SO₂ (*m/z* 64, 48, 32) та утворенням полімерного продукту, оскільки в мас-спектрах у цьому температурному діапазоні відсутні продукти деструкції піранозного кільця. Термічним розкладом цього продукту зумовлена третя, високотемпературна стадія, яка відбувається в температурному діапазоні 600– 700 °С ($T_{\text{макс}}$ ~670 °С) (рис. 4). Отже, головні продукти при термолізі гепарину в конденсованому стані SO₂ (*m/z* 64, 48, 32) та CO₂ (*m/z* 44, 28).

Розклад гепарину на поверхні SiO₂ перебігає за три основні стадії (рис. 5).

Термоліз гепарину на поверхні кремнезему починається приблизно за тієї ж температури ($T_{\text{макс}}$ =200 °C), що і в конденсованому стані. Тому можна зробити висновок, що поверхня кремнезему не впливає на початок термолізу гепарину. На рис. 5 показано, що розклад відбувається в двох температурних діапазонах: 150-350 і більш широкому - 400-650 °С. На першій стадії відбуваються також процеси декарбоксилювання CO₂ (*m/z* 44) та відщеплення SO₂ (*m/z* 64, 48, 32). Крім того, відбувається деструкція глікозидних зв'язків з десорбцією в молекулярній формі ненасиченого аміноцукру з m/z 125 (Mr=125 Да) (схема 2). Саме такий продукт спостерігався нами раніше при термолізі хітозану [20, 21]. При подальшому нагріванні вище 400 °С мають місце процеси розкладу полімерного продукту. *Т*_{маке} цього процесу на поверхні кремнезему зсувається в низькотемпературну область на ~100 °С.

Рис. 4. Мас-спектри гепарину за температури 225 °С (*a*) та 671 °С (σ); криві термодесорбції для іонів з *m/z* 64, 48, 44, 32, отримані під час термолізу гепарину в конденсованому стані (*в*)

Проведено термічний аналіз зразків кремнезему та кремнезему, модифікованого гепарином з водного розчину. На ДТГ кривій для зразка кремнезему спостерігається пік за T_{макс}=62 °С (рис. 6), який пов'язаний з десорбцією фізсорбованої води з поверхні кремнезему. Для зразка кремнезему, модифікованого гепарином, спостерігаються декілька піків втрати маси на ДТГ-кривих (рис. 6). Перший пік втрати маси на ДТГкривих за T_{макс}=72 °C для зразка кремнезему, модифікованого гепарином, належить до видалення фізсорбованої води (втрата маси становить близько 5,83 %). Другий, вузький пік втрати маси на ДТГ-кривих у температурному діапазоні 200-300 °С (T_{мак}=252 °С) пов'язаний з десорбцією продуктів деструкції, відщеплення SO₂, CO₂ від молекули гепарину, адсорбованого на поверхні ВДК (втрата маси 2,96 %). Цей пік співставляється з процесами декарбоксилювання та відщеплення SO₂ на першій стадії термолізу при

Рис. 5. Мас-спектри гепарину за температури 208 °С (*a*) та 525 °С (*б*); криві термодесорбції для іонів з m/z 125, 97, 84, 64, 48, 32, отримані при термолізі гепарину на поверхні кремнезему (0,6 ммоль/г) (*в*)

ТПД-експерименті ($T_{\text{макс}}$ =200 °С, рис. 5). В атмосфері кисню під час проведення термогравіметричних вимірювань пік ($T_{\text{макс}}$ =252 °С) цього процесу зсунуто в бік високотемпературної області на ~50 °С. Третя стадія перебігає в широкому температурному діапазоні $T_{\text{макс}}$ =300–600 °С і, очевидно, пов'язана з процесами розкладу полімерного продукту (втрата маси 5,83 %).

За даними ТГ-кривої (рис. 7) можна приблизно оцінити кількість гепарину, який сорбується на поверхні кремнезему за умов рівноважної адсорбції з розчину з визначеною концентрацією гепарину 3 мг/мл. Ця кількість становить 35 мг/г.

Висновки.

Ідентифіковано стадії термолізу гепарину в конденсованому стані та на поверхні кремнезему. Розклад гепарину в конденсованому стані перебігає за три

Рис. 6. ТГ(*a*) і ДТГ (δ) криві зразків: кремнезему (*1*); кремнезему, модифікованого гепарином з водного розчину (0,6 ммоль/г) (*2*)

стадії. На першій і другій стадіях відбуваються процеси декарбоксилювання (CO₂, m/z 44) та відщеплення SO₂. Третя високотемпературна стадія відбувається в температурному діапазоні 600–750 °С. Термоліз гепарину на поверхні кремнезему перебігає в двох тем-

Рис. 7. ТГ (*a*) і ДТГ (б) криві зразків: кремнезему (*1*); гепарину, адсорбованого на кремнеземі з водного розчину (~35 мг/г) (2)

пературних діапазонах: 150–350 °С та в більш широкому – 400–650 °С. На першій стадії спостерігаються також процеси декарбоксилювання CO₂ (m/z 44), відщеплення SO₂ (m/z 64, 48, 32) та деструкція глікозидних зв'язків з десорбцією в молекулярній формі ненасиченого аміноцукру з m/z 125 (Mr=125 Да).

Аналіз СЕМ-знімків і розподілу частинок за розмірами показав, що діаметр частинок кремнезему, модифікованого гепарином, менший, у порівнянні з діаметром частинок вихідного кремнезему, а розподіл вужчий. Але головна фракція частинок модифікованого кремнезему залишається у формі агрегатів з $d_{\phi кс}$ між 50 і 500 нм. За умов проведення досліджень за

Література

1. Rosenberg R.D. // Ann Rev Med. – 1978. – T. 29. – C. 367–378.

2. *Garg H.G.* Chemistry and Biology of Heparin and Heparan Sulfate. - Oxford: Elsevier Science, 2011. - 792 p.

3. *Eikelboom J.W., Hankey G.J.* // Med. J. Aust. – 2002. – 177, № 6. – C. 379–383.

4. *Hirsh J., Raschke R.* // CHEST Journal. – 2004. – **126**, № 3. – C. 188S–203S.

5. *Horwitz O., Johnson W.T., Sayen J.J. et al.* // Trans. Am. Clin. Climatol. Assoc. – 1993. – T. 104. – C. 94–102; discussion 102–103.

6. *Kemp M.M., Kumar A., Mousa S. et al.* // Biomacromolecules. – 2009. – **10**, №3. – C. 589–595.

7. *Kemp M.M., Linhardt R.J.* // Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. -2010. -2, No 1. - C. 77-87.

8. *Passirani C., Barratt G., Devissaguet J.-P. et al.* // Pharm. Res. – 1998. – **15**, № 7. – C. 1046–1050.

9. *van Oss C.J.* // Ann. Rev. Microbiol. – 1978. – T. 32. – C. 19–39.

10. *Vivero-Escoto J.L., Slowing I.I., Trewyn B.G. et al.* // Small. – 2010. – **6**, № 18. – C. 1952–1967.

11. Zhang Y., Liu X., Lu Y. [et al.] // J. of Chemistry. – 2013. – T. 2013. – C. 1–10.

допомогою ФКС pH суспензій становило ~6. Поверхня кремнезему за таких pH заряджена негативно. Оскільки полімер має також негативний заряд, це зумовлює дезагрегацію частинок і розпад агрегатів за рахунок взаємного відштовхування негативно заряджених ланцюгів полімеру та частинок кремнезему.

Робота виконана за підтримки гранту M/299-2013від Державної агенції з питань науки, інновацій та інформатизації України, проекту CRDF Global $N \ge UKC-2-7072-KV-12$ і сьомої рамкової програми (Seventh Framework Programme (FP7/2007-2013), Marie Curie International Research Staff Exchange Scheme (грант $N \ge 230790$)).

12. *Silvestri B., Pezzella A., Luciani G., et al.* // Mat. Sci. Eng. C. – 2012. – **32**, № 7. – C. 2037–2041.

13. *Kulik T.V., Azizova L.R., Palyanytsya B.B. et al.* // Mat. Sci. Eng. Part B. – 2010. – **169**, № 1–3. – C. 114–118.

14. Кулик Т.В., Паляница Б.Б., Азизова Л.Р. и др. // Масс-спектрометрия. – 2008. – **5**, № 2. – С. 125–132.

15. Кулик Т.В., Дудик О.А., Паляница Б.Б. и др. // Теорет.

и эксперим. химия. – 2011. – **47**, № 3. – С. 168–173. 16. Legrand A.P. The surface properties of silicas / Andre Pierre Legrand – Chichister, New York, Weinheim, Brisbane, Singapore, Toronto: John Wiley, 1998. – 470 р. 17. Айлер Р. Химия кремнезема в 2-х ч. Пер. с англ. Л.Т. Журавлева / ред. В.П. Прянишникова. – Москва: Мир, 1982. – 416 с.

18. *Vlasova N.N., Golovkova L.P.* // Colloid J. – 2004. – **66**, № 6. – C. 657–662.

19. *Linhardt R.J., Murugesan S., Xie J.* // Curr. Top. Med. Chem. – 2008. – **8**, № 2. – C. 80–100.

20. Kulyk T.V., Palyanytsya B.B., Borodavka T.V., Borysenko M.V. // Nanomaterials and Supramolecular Structures, Physics, Chemistry and Application [Eds. A.P. Shpak, P.P. Gorbyk]. – Springer, 2010. – P. 259–269.

21. Кулик Т.В., Паляница Б.Б., Бородавка Т.В. и др. // Масс-спектрометрия. – 2006. – **3**, № 3. – С. 175–180.

Надійшла до редакції 30 січня 2014 р.

Физико-химическое исследование кремнезема, модифицированного гепарином, для создания новых систем доставки лекарственных средств

Л.Р. Азизова¹, Т.В. Кулик¹, Б.Б. Паляница¹, К. Ласло², А. Менихард²

¹Институт химии поверхности им. А.А. Чуйко НАН Украины 17, ул. Генерала Наумова, Киев, 03164, Украина ²Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics H-1521 Budapest, Hungary

> Методами термопрограммированной десорбционной масс-спектрометрии (ТПД-МС), ИК-спектроскопии, термогравиметрии и фотон-корреляционной спектроскопии исследован кремнезем, модифицированный гепарином. Идентифицированы стадии и продукты термолиза гепарина в конденсированном состоянии и на поверхности кремнезема. СЕМ-снимки и анализ распределения частиц по размерам показал, что модифицирование кремнезема гепарином приводит к разрушению агрегатов частиц кремнезема, уменьшения диаметра частиц и более узкому распределению частиц по размерам. При этом главная фракция частиц остается в виде агрегатов с d_{фкс} между 50 и 500 нм.

Ключевые слова: гепарин, кремнезем, термопрограммированная десорбционная масс-спектрометрия (ТПД-МС), фотон-корреляционная спектроскопия, сканирующая электронная микроскопия.

Physico-cmemical study of silica modified by heparine for developing of new drug release systems

L.R. Azizova¹, T.V. Kulyk¹, B.B. Palianytsia¹, K. Laszlo², A. Menihard²

¹Інститут химии поверхности им. А.А. Чуйко NAS of Ukraine 17, General Naumov str., Kyiv, 03164, Ukraine ²Department of Physical Chemistry and Material Science, Budapest University of Technology and Economics H-1521 Budapest, Hungary

The silica modified by heparine has been investigated using temperature programmed desorption mass spectrometry (TPD-MS), IR-spectroscopy, thermogravimetry and photon correlation spectroscopy methods. Stages and products of heparin thermolysis in the pristine state and adsorbed on the silica surface have been identified. SEM-images and the particle size distribution analysis showed that the modification of silica by heparin leads to deaggregation of silica particles, decrease of particles diameter and the narrower particle-size distribution. However, the main fraction of the particles remains in the form of aggregates with diameter between 50 and 500 nm.

Key words: heparine, fumed silica, temperature programmed desorption mass spectrometry (TPD-MS), photon correlation spectroscopy, scanning electron microscopy.