УДК 678.68:547.304:547.539.1

Фторсодержащие полиазометины: синтез и свойства

Я.Л. Кобзарь, И.М. Ткаченко, О.В. Шекера, В.В. Шевченко

Институт химии высокомолекулярных соединений НАН Украины 48, Харьковское шоссе, 02160, Киев, Украина

Рассмотрены общие подходы к получению полиазометинов, содержащих в своем составе фторированные фрагменты. Предложена классификация фторсодержащих полиазометинов, которая базируется на способе введения в состав полимеров азометиновой группы. В рамках предложенной классификации представлены подходы к получению фторсодержащих полиазометинов традиционным способом (взаимодействие диаминов с диальдегидами) и альтернативным способом (применение азометинсодержащих мономеров). Проанализировано влияние природы фторированной компоненты (трифторметилсодержащие, перфторароматические, монофторбензольные фрагменты), функциональных групп (гидроксильные, сложноэфирные, имидные и др.) и фрагментов (оксифенильные, алифатические и др.), а также способов формирования полимерной цепи на свойства синтезированных полиазометинов.

Ключевые слова: фторсодержащие полиазометины, фторсодержащие мономеры, синтез, структура, свойства.

Среди полимеров с сопряженными фрагментами особый интерес вызывают полиазометины (ПАМ) [1-5]. Он связан с рядом их уникальных свойств, таких как высокая химическая стабильность, электронная проводимость [6-11], пьезо- и пироэлектрические [12], оптические, электрооптические [8, 13, 14], жидкокристаллические свойства [15-18], а также с возможностью комплексообразования с ионами различных металлов [1, 13, 18-24]. Они находят применение в качестве светоизлучающих диодов («lightemitting diodes» (LED)) для электролюминесцентных приборов, термотропных и электронтранспортных материалов для оптоэлектронных устройств, нелинейно-оптических материалов для создания на их основе оптических переключателей и устройств для записи и хранения голографической информации и т. д. [2-5].

В то же время, литературные данные показывают, что один из способов улучшения оптических, в том числе и электрооптических, а также других свойств полимеров связан с введением в их состав атомов фтора [25–29]. В связи с этим, особый интерес представляет обобщение подходов к получению фторсодержащих ПАМ, а также их свойств. Несмотря на ряд обширных обзоров, посвященных рассмотрению способов синтеза и свойств ПАМ, фторированные ПАМ в данных работах практически не представлены [2– 5].

В настоящем обзоре рассмотрены общие подходы к получению фторсодержащих ПАМ и основные пути введения в их состав атомов фтора. Предложена классификация фторсодержащих ПАМ, которая базируется на способе введения в состав полимеров азометиновой группы и атомов фтора. В рамках предложенной классификации представлены подходы к получению фторсодержащих ПАМ, особенности формирования полимерной цепи, даны характеристики полученных фторсодержащих ПАМ.

Общие подходы к получению фторсодержащих ПАМ.

На основе литературных данных можно выделить два подхода к введению в состав полимеров азометиновой группы. Первый, традиционный способ, основывается на взаимодействии диаминов с диальдегидами [12, 30-35]. Большинство ПАМ, полученные таким способом, характеризируются недостаточной растворимостью и низкими значениями молекулярных масс (ММ). В пределах традиционного подхода также использован олигомерный путь получения ПАМ, заключающийся в предварительном синтезе олигоамидокислот с концевыми аминогруппами [35]. Применение мономеров, содержащих в своем составе азометиновые группы, представляет второй, так называемый альтернативный способ синтеза ПАМ [36-39]. В рамках второго подхода рост полимерной цепи фторсодержащих ПАМ осуществляют за счет образования эфирных, уретановых или имидных групп. Соответственно были получены такие классы полимеров как полиазометинэфиры (ПАМЭ) [37], полиазометинуретаны (ПАМУ) [36] и полиазометинимиды (ПАМИ) [38, 39]. Такие ПАМ, в большинстве случаев, растворимы в органических растворителях и характеризуются высокими значениями MM. Оба указанных способа использованы и при синтезе фторсодержащих ПАМ.

В настоящее время в ПАМ вводят атомы фтора в составе трифторметилсодержащих, монофторбензольных и перфторароматических фрагментов [40– 44]. Среди трифторметилсодержащих фрагментов наиболее широко используют гексафторизопропилиденовую группу (- $C(CF_3)_2$ -), входящую, как правило, в состав (гексафторизопропилиден)дифенильного фрагмента соответствующих мономеров [12, 30, 33, 37–39]. Гораздо менее изучены ПАМ с трифторметилфенильными, бис(трифторметил)бифенильными и перфторированными ароматическими фрагментами. В литературе известно два ПАМ, содержащие перфторированные ядра: фрагмент тетрафторбензола [34] и октафторбифенила [31].

При синтезе ПАМ с применением традиционного подхода используют, в основном, фторсодержащие диамины [12, 33, 35] и, в меньшей степени, фторсодержащие олигодиамины или диальдегиды [30, 31]. Известен также ПАМ, полученный на основе фторсодержащих диамина и диальдегида [30]. В рамках альтернативного подхода ПАМЭ и ПАМУ получают на основе фторсодержащих бисфенолов [36, 37], а для получения ПАМИ используют фторсодержащие диангидриды [38, 39]. При этом азометиновая группа входит в состав дигалогенсодержащих мономеров, бисфенолов и диаминов при синтезе ПАМЭ, ПАМУ и ПАМИ соответственно.

Особенности проведения синтеза фторсодержащих ПАМ традиционным способом во многом аналогичны таковым нефторированным ПАМ и подробно описаны в ряде обзоров [2–5, 45]. Условия синтеза ПАМ альтернативным способом, а именно ПАМЭ, ПАМУ и ПАМИ, мало чем отличаются от классических способов синтеза полиэфиров, полиуретанов и полиимидов соответственно.

Отметим, что в связи с ограниченной растворимостью приведенные значения характеристической вязкости ([η]) для фторсодержащих ПАМ определены в полярных апротонных растворителях, либо в серной кислоте. Так, значения [η] в полярных апротонных растворителях не превышают 0,57 дл/г. Исключение составляют некоторые ПАМИ, величины [η] которых могут достигать 1,4 дл/г. В то же время значения [η] для ПАМ в серной кислоте не превышали 0,48 дл/г [35–39]. К сожалению, молекулярно-массовые характеристики фторсодержащих ПАМ приведены только в единичных случаях.

Синтез фторсодержащих ПАМ традиционным способом.

Взаимодействием 2,2-бис(4-аминофенил)гексафторпропана (6F-диамин) с терефталевым и изофталевым альдегидами получены с высокими выходами трифторметилсодержащие ПАМ I и ПАМ II соответственно (табл. 1) [12]. Показано, что ПАМ І и ПАМ II характеризуются высокой термической стабильностью и хорошей растворимостью в N-метилпирролидоне (N-МП), N,N-диметилформамиде (ДМФА), N,Nдиметилацетамиде (ДМАА), гексаметилфосфортриамиде (ГМФТА). Последнее, очевидно, связано с низкой энергией межмолекулярных связей атомов фтора, так как нефторированные аналоги ПАМ I и ПАМ II практически не растворимы в органических растворителях. Замена *пара*-фениленовых фрагментов в ПАМ I на *мета*-фениленовые приводит к понижению значения [η] ПАМ II, но при этом повышается его

соглас	COГЛАСНО СХЕМЕ: $H_2N_X.NH_2 + 0 \xrightarrow{\sim} Y^{\sim} $									
ПАМ	Х	Y	Выход, %	[η], (дл/г)	$M_{\rm w}$	M_w/M_r	σ, МПа	ε, %	<i>T</i> _{5%} (<i>T</i> _{10%}), °C	
Ι	$ CF_3$ $ CF_3$	\rightarrow	95	0,26	-	-	-	-	443 (473)	
II	CF3		85	0,21	-	-	-	-	486 (513)	
III	$- \bigcirc - \circ - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc - \bigcirc -$	\langle	97	0,41	-	-	26	3	467 (501)	
IV	- $ -$		99	0,36	-	-	20	2	490 (520)	
V	HO CF ₃		96	-	15200	2,2	-	-	-	

Таблица 1. Структура и свойства ПАМ на основе диаминов с трифторметильными группами, полученные

 $[\eta]$ – характеристическая вязкость измерена в N-МП при температуре 30 °C; М_w – среднемассовое значение молекулярной массы; М_n – среднечисловое значение молекулярной массы; М_w/M_n – мера полидисперсности; σ – прочность на разрыв; ε – относительное удлинение; $T_{5\%}$ – температура 5 %-ной потери массы; $T_{10\%}$ – температура 10 %-ной потери массы.

термостабильность (ср. ПАМ I и ПАМ II в табл. 1). ПАМ I и ПАМ II формируют довольно хрупкие пленки, поэтому для улучшения как механических, так и других свойств ПАМ предложен подход, связанный с увеличением длины сопряженных фрагментов и уменьшением концентрации -C=N-групп. Данный подход был реализован благодаря функционализацией 6F-диамина дополнительными оксифенильными фрагментами (ПАМ III и ПАМ IV). Включение последних в состав ПАМ III и ПАМ IV позволило не только повысить значение $[\eta]$ указанных полимеров, но и улучшить их термические и механические свойства (табл. 1) [12]. Так, значение прочности на разрыв (σ) указанных ПАМ достигает 26 МПа, при этом ПАМ III имеет модуль упругости 1,1 ГПа, а ПАМ IV - 1,6 ГПа. Следует отметить, что ПАМ I и ПАМ III, полученные на основе терефталевого альдегида, уступают по термической стабильности ПАМ ІІ и ПАМ IV, синтезированных на основе изофталевого альдегида.

Дальнейшая функционализация 6F-диамина гидроксильными группами позволила получить с высоким выходом гидроксифункционализированный ПАМ V (табл. 1), который характеризируется растворимостью в N-MП, ДМФА и этиллактате [33]. Установлено, что при нагревании ПАМ V до температуры 350 °C в течение 1 ч на воздухе он подвергается внутримолекулярным изменениям с образованием полибензоксазола Va согласно схеме:

Полученный полибензоксазол Va характеризируется такой же растворимостью, что и ПАМ V, а также обладает низкой диэлектрической проницаемостью, значение которой равно 2,76 при 1 МГц.

С целью регулирования количества атомов фтора, физико-химических свойств ПАМ I – ПАМ IV при их синтезе наряду с фторсодержащими диаминами (сомономеры), были использованы и нефторирован-

ные диамины. Этим путем были получены ПАМ VI-ПАМ ІХ (табл. 2) [12]. Указанные сополимеры характеризируются хорошей термостабильностью и растворимостью в органических растворителях, из которых формируют хрупкие пленки. Как и в случае с ПАМ III и ПАМ IV, введение в состав ПАМ VIII и ПАМ ІХ дополнительных оксифенильных фрагментов позволяет повысить значение [η] последних в 2 раза по сравнению с ПАМ VI и ПАМ VII. Отметим, что для ПАМ VIII и ПАМ IX наблюдается такая же зависимость повышения величин $[\eta]$ и температуры 5 %-ной потери массы ($T_{5\%}$), как и для ПАМ III и ПАМ IV, связанная с введением дополнительных оксифенильных фрагментов в состав полимерной цепи. Наряду с этим, уменьшение количества атомов фтора на элементарное звено рассмотренных сополимеров негативно сказывается на их механических свойствах.

В работе [31] предложено использовать в качестве фторированной компоненты диальдегиды, содержащие трифторметилфенильные или бис(трифторметил)бифенильные фрагменты – ПАМ X и ПАМ XI соответственно (табл. 3). Однако, такой подход оказался эффективным для получения только частично растворимых ПАМ X и ПАМ XI в пиридине, N-МП, ГМФТА, поэтому, по-видимому, физико-химические свойства таких полимеров в дальнейшем не изучались. В то же время, использование диальдегидов, содержащих фрагменты гексафторпропана, позволило получить ПАМ XII – ПАМ XIV с высокими выходами и хорошей растворимостью (табл. 3) [30]. Такие полимеры растворимы в CHCl₂, ДМФА, диметилсульфоксиде (ДМСО), N-МП, тетрагидрофуране $(T\Gamma \Phi)$ и нерастворимы в толуоле и ацетоне. Замена жесткого бифениленового фрагмента в ПАМ XII на более гибкие дифенилэфирные (ПАМ XIII) или 4,4'-(изопропилиден)-бис(п-фенокси)-дифенильные (ПАМ XIV), позволило повысить показатель [η] полимеров до 0,49 дл/г. Величины температур стеклования (T_{i}) и механические свойства для ПАМ XII – ПАМ ХІЎ зависят от строения их полимерной цепи

схеме	$\mathbb{C} \times \mathbb{C} \times $									
ПАМ	Х	Y	Z	Выход, %	[η] в N-МП при 30 °С, (дл/г)	<i>T</i> _{5%} (<i>T</i> _{10%}), °C				
VI	$ CF_3$ $ CF_3$		$\left \right\rangle$	89	0,27	448 (481)				
VII	$ CF_3$ $ CF_3$			93	0,20	478 (508)				
VIII			\rightarrow	95	0,44	455 (489)				
IX	$- \bigcirc - 0 - \bigcirc $		\langle	98	0,38	485 (499)				

Таблица 2. Сополимеры ПАМ на основе диаминов с трифторметильными группами, полученные согласно

H ₂ N _X	$.NH_2 + 0^{\sim}Y^{\sim}O \longrightarrow$							
ПАМ	Х	Y	Выход, %	[η] в ДМФА 30 °С, (дл/г)	<i>о</i> , МПа	ε,%	T _g , ℃	<i>T</i> ₅‰, °C
X	\rightarrow		-	-	-	-	-	-
XI		F_3C	-	-	-	-	-	-
XII		- $ -$	89	0,39	-	-	196	489
XIII		- $ -$	94	0,42	26	7	182	491
XIV			92	0,49	31	8	215	458
XV			89	0,57	38	8	211	481

Таблица 3. ПАМ на основе диальдегидов с трифторметильными группами, полученные согласно схеме:

(табл. 3). Так, ПАМ XIV характеризировался наивысшей T_{a} по сравнению с ПАМ XII – ПАМ XIII. Отметим, что ПАМ XII - ПАМ XIV имеют хорошую термическую стабильность. При этом ПАМ XII характеризуется слабой пленкообразующей способностью, тогда как пленки ПАМ XIII и ПАМ XIV имеют значения σ выше 25 МПа.

Как особый случай получения фторсодержащих ПАМ можно рассматривать ПАМ XV, полученный на основе диамина и диальдегида, содержащих как фрагменты гексафторпропана, так и оксифенильные развязки. Полученный таким образом ПАМ XV, помимо хорошей термической стабильности, характеризуется самыми высокими значениями $[\eta]$ и σ среди всех вышеописанных ПАМ (табл. 3) [30].

Если ПАМ, содержащие в качестве перфторированных фрагментов трифторметильные группы, достаточно широко описаны в литературе, то ПАМ с перфторароматическими фрагментами практически не изучены. В литературе известно два таких полимера. Первый содержит фрагменты октафторбифенила в составе диаминной компоненты (ПАМ XVI) [31], а второй - тетрафторбензола в диальдегидной составляющей (ПАМ XVII) [34]. Введение в состав ПАМ XVI фрагментов октафторбифенила приводит к получению нерастворимого полимера (табл. 4), тогда как присутствие в составе ПАМ XVII фрагментов тетрафторбензола, наряду с октильными фрагментами, позволяет получить полимер, растворимый при кипячении в ДМФА, ДМСО, 1,2-дихлорбензоле и N-МП. Найденные значения ММ растворимой фракции ПАМ XVII при комнатной температуре оказались достаточно низкими (табл. 4). Данные рентгенографического анализа показывают, что ПАМ XVII обладает кристаллической структурой и претерпевает обратимые изменения кристалличности в интервале температур 90-150 °С. Нагревание ПАМ XVII до температуры 300 °С приводит к необратимым изменениям рассеивающих свойств рентгеновских лучей (по крайней мере, необратимым в масштабе времени эксперимента).

Для синтеза ПАМ как традиционным, так и альтернативным способом, в настоящее время, использован только фрагмент монофторбензола (табл. 5) [32]. При получении указанных ПАМ традиционным способом были использованы диамины, которые наряду с монофторбензольными фрагментами, содержат 1,6-диоксигексановые (ПАМ XVIII и ПАМ XIX) или 1,12-диоксидодекановые (ПАМ XX и ПАМ XXI) спейсеры. Этим путем были получены ПАМ XVIII -ПАМ XXI (табл. 5), растворимые только в концентрированных серной и трифторуксусной кислотах [32]. В связи с этим их значения [η] определены из растворов концентрированной серной кислоты. ПАМ XVIII

Таблица 4. ПАМ с перфторароматическими фрагментами, полученные согласно схеме:

H_2NX'	$M_2 + 0 \neq Y \leq 0 \longrightarrow$				
ПАМ	Х	Y	Выход, %	[η] в H ₂ SO ₄ при 30 °C, (дл/г)	<i>Т</i> _{пл.} , °С
XVIII			91	0,48	176
XIX			92	0,48	163
XX	$- _{F} O \begin{bmatrix} H_{2} \\ C \end{bmatrix} O \\ I_{2} \\ F \end{bmatrix} $		91	0,48	166
XXI	$- \underbrace{ \begin{array}{c} - & \\ - & \\ F \end{array}}_{F} - O \begin{bmatrix} H_{2} \\ - & \\ - & \\ - & \\ H_{2} \end{bmatrix} O - \underbrace{ \begin{array}{c} - & \\$		88	0,37	138

Таблица 5. ПАМ с монофторбензольными фрагментами, полученные согласно схеме:

 $T_{_{\Pi\Pi}}$ – температура плавления.

- ПАМ XXI является частично кристаллическим полимерами. При этом рост числа метиленовых групп алифатических блоков от 6 до 12 ведет к понижению температур плавления (T_{nn}) (ПАМ XVIII и ПАМ XIX с ПАМ ХХ и ПАМ ХХІ в табл. 5). Наряду с этим введение в состав ПАМ XIX и ПАМ XXI атомов хлора позволяет дополнительно понизить величину $T_{\rm max}$. ПАМ XVIII формирует нематический тип жидкокристаллической фазы в области температур 176-259 °С, а свыше 259 °С переходит в изотропное состояние. Для ПАМ XIX также характерен нематический тип мезофазы, которая начинает формироваться при температуре 163 °С и существует вплоть до разрушения полимера. ПАМ ХХ формирует смектическую мезофазу, которая существует в области температур 166-213 °C, а ПАМ XXI - в рамках нематической жидкокристаллической мезофазы прямоугольную наклоненную бананоподобную фазу «rectangulartilted banana phase» при температуре 138-179 °С. Отметим, что для большинства нефторированных аналогов рассматриваемых ПАМ определить область существования жидкокристаллической фазы не удалось, так как полимеры разрушаются в мезоморфном состоянии. Введение атомов фтора в состав ПАМ **XVIII** – ПАМ **XXI** позволило сдвинуть процессы деструкции ПАМ в область повышенных температур, при этом не повлияв существенным образом на температурный интервал существования мезофазы.

С целью увеличения прозрачности пленок и уменьшения диэлектрической проницаемости ПАМ в их состав помимо атомов фтора были введены имидные гетероциклы. Такие ПАМ синтезированы в три стадии с применением олигомерного подхода [35]. На первой стадии взаимодействием 2,2-бис(трифторметил)бифенил диамина (ФД) с 1,2,3,4-циклобутановым (ЦБА) или пиромеллитовым (ПМА) диангидридами получены соответствующие фторсодержащие олигоамидокислоты ОАК I и ОАК II с концевыми аминогруппами согласно схеме:

$H_2N \longrightarrow F_3C$	$ = \underbrace{ \begin{array}{c} \begin{array}{c} HO \\ HO \\ H \\ H \\ H \\ H \\ O \\ O \end{array} } \underbrace{ \begin{array}{c} O \\ H \\ H \\ H \\ H \\ O \\ O \end{array} } \underbrace{ \begin{array}{c} O \\ H \\ H \\ H \\ H \\ H \\ O \\ O \end{array} } \underbrace{ \begin{array}{c} O \\ H \\$	H2 + х 7 Y - У	$-\left[N = Y = N - \left(\sum_{F_3C}^{CF_3}\right)\right]_{F_3C}$		$\bigcup_{V=0}^{O} \bigvee_{F_3C}^{CF_3}$
ПАМ	Х	Y	[η] в N-МП при 30 °С, (дл/г)	T _g , ℃	<i>T</i> 5‰, °C
XXII	X	\rightarrow	0,15	348	422
XXIII			0,30	382	460
XXIV	X		0,17	260	433
XXV	XX		0,14	247	448

Таблица 6. ПАМ на основе ОАК с трифторметильными группами, полученные согласно схеме:

полученные согласно схеме: $F - \underbrace{C=N-X-N=C}_{H} - \underbrace{C=N-X-N=C}_{H} - \underbrace{C=N-X-N=C}_{H} - \underbrace{C=N-X-N=C}_{n} $							
ПАМЭ	Х	Y	[η] в ДМАА при 25 °С, (дл/г)	<i>Т</i> _{пл.} , °С	$T_{\rm g}, ^{\circ}{\rm C}$	$T_{5\%}^{\circ}\mathrm{C}$	
XXVI	\mathbf{i}	$ CF_3$ CF_3	-	-	-	480	
XXVII		$ CF_3$ CF_3	0,4	-	166	460	
XXVIII		$ CF_3$ CF_3	0,42	310	149	487	

Таблица 7. ПАМЭ,	содержащие	фрагменты	гексафт	орпропана	в составе	бисфенольной	компон	енты,
		/=	∧	1			1	

где: X = (ЦБА, ОАК I); (ПМА, ОАК II).

Мольное соотношение диамина ФД и диангидрида (ЦБА или ПМА) составило 5 : 2 соответственно. На второй стадии поликонденсацией ОАК І или ОАК II с различными диальдегидами синтезированы азометинсодержащие полиамидокислоты, которые на третьей стадии подвергались термической имидизации при температуре 330 °С. Таким образом, были получены ПАМ ХХІІ – ПАМ ХХУ (табл. 6). Выше было показано, что ПАМ XI, содержащий бис(трифторметил)бифенильные фрагменты, растворим только в концентрированной серной кислоте [31]. Применение бис(трифторметил)бифенилсодержащих олигомеров в рамках традиционного подхода при получении ПАМ ХХІІ – ПАМ ХХУ позволило придать им растворимость в таких растворителях как N-МП, ДМФА и ДМСО. Использование ПМА при синтезе ПАМ ХХІІІ позволяет, наряду с увеличением вязкости полимера, повысить и его значения T_{g} и $T_{5\%}$ в сравнении с ПАМ XXII, полученным на основе ЦБА. Однако ПАМ XXII характеризуется меньшими значениями диэлектрической проницаемости (2,83 для ПАМ XXII и 2,93 для ПАМ XXIII) и коэффициента двойного лучепреломления (0,0640 для ПАМ XXII и 0,1155 для ПАМ XXIII). В то же время прозрачность пленок рассмотренных полимеров оказалось недостаточной. Так, длина волны отсечки, согласно данным УФ-спектроскопии, для ПАМ XXII составила 422 нм, а для ПАМ ХХІІІ – 425 нм.

С целью повышения прозрачности пленок в ПАМ **XXII** были введены сложноэфирные группы, что позволило понизить значение длины волны отсечки до 362 нм для ПАМ **XXV.** Однако, наличие сложноэфирных групп в составе ПАМ **XXIV** и ПАМ **XXV** приводит к уменьшению их значений [η], T_g и $T_{5\%}$, в сравнении с ПАМ **XXIII** (табл. 6). Более того, наличие полярных сложноэфирных групп в ПАМ XXIV и ПАМ XXV повышает значения их диэлектрической проницаемости (3,03 для ПАМ ХХІУ и 2,97 для ПАМ XXV) и коэффициента двойного лучепреломления (0,1521 для ПАМ XXIV и 0,1309 для ПАМ XXV). Следует отметить, что ПАМ XXIV характеризуется низким значением коэффициента теплового расширения (0,81 мд·К-1) и высоким модулем упругости при растяжении (6,3 ГПа). Тогда как значения коэффициента теплового расширения для ПАМ ХХИ, ПАМ XXIII и ПАМ XXV находятся в интервале 6,7-32,7 мд·К⁻¹, при этом значения модуля упругости для данных ПАМ не приведены [35]. В данной работе также отмечено, что регулирование рассмотренных выше свойств в незначительных пределах возможно за счет изменения соотношения имидной и азометиновой составляющей.

Синтез фторсодержащих ПАМ альтернативным способом.

Получение фторсодержащих ПАМ успешно осуществляется и с использованием готовых азометинсодержащих мономеров. Таким способом получены фторсодержащие ПАМЭ, ПАМУ и ПАМИ [36–39]. Атомы фтора в таких полимерах находятся как в составе трифторметильных групп, в частности перфторированные гексафторизопропилиденовые фрагменты [37–39], так и в монофторбензольных фрагментах [36]. ПАМ с перфторароматическими фрагментами, полученные альтернативным способом, в литературе не описаны.

В рамках данного подхода получена серия фторсодержащих ПАМЭ **XXVI** – ПАМЭ **XXVIII** (табл. 7) с использованием азометинсодержащих дифторидов и бисфенола с фрагментами гексафторпропана (бисфенол АФ) [37]. Традиционно при получении простых полиэфиров используют карбонат калия в качестве генератора фенолят-ионов [37, 43]. Однако, в работе [37] отмечено, что применение такого подхода приводит к частичному гидролизу продукта реакции. В связи с этим был предложен иной путь получения ПАМЭ – взаимодействие азометинсодержащей дигалогенком-

$HO^{Y} \otimes^{N} X^{N} \otimes^{Y} OH + OCN^{Z} NCO \longrightarrow \left[O^{Y} \otimes^{N} X^{N} \otimes^{Y} OH \right]_{H} H^{Z} O_{h}$						
ПАМУ	Х	Y	Z	Выход, %	[η] в ДМАА при 27,5 °С, (дл/г)	
XXIX	F			80	0,32	
XXX	F		- $ -$	82	0,12	
XXXI	F		- $ -$	90	0,26	
XXXII	F		СН3	80	0,18	
XXXIII	F			85	0,14	
XXXIV	F			85	0,18	
XXXV	F		-(CH ₂) ₆ -	85	0,22	
XXXVI	F		-(CH ₂) ₆ -	83	0,17	
XXXVII	F		-(CH ₂) ₆ -	80	0,21	

Таблица 8. ПАМУ, содержащие монофторбензольные фрагменты, полученные согласно схеме:

поненты с силилированными производными бисфенола АФ в присутствии CsF. ПАМ XXVI растворим лишь в концентрированной серной кислоте. Замена жесткого фениленового фрагмента в полимере XXVI на более гибкие дифенилметановые или дифенилоксидные, позволила придать ПАМ XXVII и ПАМ **XXVIII** растворимость в CHCl₃, CH₂Cl₂, ДМАА, N-МП. При этом ПАМ **XXVII** с фрагментом дифенилметана обладал наибольшей величиной T_g , тогда как ПАМ **XXVIII** с фрагментом дифенилоксида в составе азометинсодержащей дифторидной компоненты – наилучшей термостабильностью. ПАМ **XXVIII** яв-

Таблица 9. ПАМИ, содержащие трифторметильные фрагменты, полученные согласно схеме:

H ₂ N-X-NH ₂	$\begin{array}{c} 0 \\ + \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$							
ПАМИ	Х	Y	Выход, %	[η], дл/г	M _w	M_w/M_r	<i>T</i> _g , °C	<i>T</i> _{5%} (<i>T</i> _{10%}), °C
XXXVIII		CF ₃	-	0,79 ^a	-	-	272	360 (-)
XXXIX	$- \underbrace{ \begin{array}{c} & H & H \\ & N - C - N = C \\ H & \\ & H \\ \end{array}}_{C1}$		95	1,40 ^b	60291	1,36	272	- (514)

^{*a,b*} – характеристическая вязкость измерена в ДМСО при температуре 30 и 25 °C соответственно.

ляется частично кристаллическим полимером, $T_{\text{пл.}}$ кристаллической фазы которого превышала 300 °C. Отметим, что нефторированные аналоги ПАМЭ обладают меньшими значениями T_{g} и менее стойки к термоокислительной деструкции, нежели соответствующие фторсодержащие ПАМЭ **XXVI** – ПАМЭ **XXVIII** [37].

Введение в ПАМ уретановых блоков, наряду с монофторбензольными фрагментами, достигалось взаимодействием изомерных азометинсодержащих бисфенолов с диизоцианатами различного химического строения, а именно: 4,4'-метилендифенилдиизоцианатом (МДИ), 2,4-толуилендиизоцианатом (ТДИ) и гексаметилендиизоцианатом (ГМДИ) (ПАМУ ХХІХ - ПАМУ XXXVII, табл. 8) [36]. Следует отметить, что все указанные ПАМ, содержащие наряду с монофторбензольными фрагментами и уретановые группы, характеризируются хорошей растворимостью в ДМАА, ДМФА и ДМСО. Анализ данных, приведенных в табл. 8, свидетельствует, что ПАМУ ХХІХ, ПАМУ ХХХІІ и ПАМУ ХХХУ, полученные на основе пара-азометинсодержащих бисфенолов, характеризуются более высокими значениями [η], чем ΠΑΜΥ (ΠΑΜΥ ΧΧΧ, ΠΑΜΥ ΧΧΧΗΗ, ΠΑΜΥ XXXVI) на основе *мета*-азометинсодержащих бисфенолов. Аналогичная картина наблюдается и при использовании пара-азометинсодержащих бисфенолов с метоксигруппами (ПАМУ ХХХІ, ПАМУ **ХХХІ**V, ПАМУ **ХХХVІІ**). Изучение термической стабильности ПАМУ XXIX - ПАМУ XXXVII показало, что их деструкция проходит в два этапа. На первом этапе (175-400 °C) происходит основной процесс разложения, связанный с деструкцией алифатических фрагментов и уретановых групп. Второй этап разложения (400-750 °C) связан с окислением остаточных ароматических азометинсодержащих фрагментов. Отметим, что среди описанных ПАМУ лучшей термической стабильностью обладают полимеры, полученные на основе пара-азометинсодержащих бисфенолов. Сравнение термической стабильности указанных пара-ПАМУ на основе МДИ (ПАМУ XXIX), ТДИ (ПАМУ XXXII) и ГМДИ (ПАМУ XXXV) показало, что ПАМУ на основе МДИ имеет лучшую термическую стабильность и обладают более высокими значениями [η].

Введение имидных гетероциклов в ПАМ, как и в случае имидсодержащих ПАМ XXII – ПАМ XXV [35], позволило получить растворимые в полярных протонных растворителях ПАМИ XXXVIII и ПАМИ XXXXI (табл. 9). При этом атомы фтора вводили в составе гексафторизопропилиденовых блоков только в диангидридную составляющую, а азометиновую группу – в диаминную компоненту [38, 39]. ПАМИ XXXIX, полученный на основе азометинсодержащего диамина с тиоамидной группой, характеризуется наибольшими значениями [η] среди указанных ПАМИ.

Для данного полимера найдены и молекулярно-массовые характеристики (табл. 9) [39]. Показано, что все полученные ПАМИ имеют высокую термостабильность, а их величины T_g составляют 272 °C. Заключение.

Рассмотренные выше данные показывают, что существует два подхода к получению фторсодержащих ПАМ. Первый – традиционный способ, реализуется взаимодействием диаминов или олигодиаминов с диальдегидами. Второй – альтернативный, основывается на применении мономеров, содержащих в своем составе азометиновые группы.

Основным путем введения атомов фтора в состав ПАМ, независимо от метода получения, является использование CF₃-групп, которые вводят в состав (гексафторизопропилиден)дифенильных, трифторметилфенильных или бис(трифторметил)бифенильных фрагментов. Гораздо менее изучены ПАМ, содержащие перфторированные ароматические и частично фторированные фрагменты. В качестве последних, в настоящее время, использованы только монофторбензольные фрагменты, а фторированные в ядро ПАМ получены с применением тетрафторбензол- или октафторбифенилсодержащих мономеров.

При получении ПАМ традиционным способом фторированные фрагменты вводят в состав диаминов, олигодиаминов или диальдегидов. В меньшей степени используют оба указанных фторированных мономера. Фторированные фрагменты также могут находиться в составе азометинсодержащих мономеров или в других соответствующих мономерах при синтезе ПАМ альтернативным способом. Таким образом были получены полиазометинэфиры, полиазометинуретаны и полиазометинимиды.

Ограниченная растворимость является общим недостатком всех ПАМ, в том числе и фторированных, что сдерживает их применение. Поэтому среди фторированных фрагментов особое место занимает (гексафторизопропилиден)дифенильный фрагмент, так как полимеры с указанными фрагментами, независимо от способа их получения, обладают хорошими термической стабильностью и растворимостью. Дальнейшая функционализация таких ПАМ оксифенильными фрагментами и гидроксильными группами позволила значительно улучшить их механические свойства.

Использование трифторметилфенильных, бис(трифторметил)бифенильных, перфторароматических и монофторбензольных фрагментов в рамках традиционного способа не привело к получению хорошо растворимых ПАМ. Полученные полимеры в основном характеризировались частичной растворимостью, либо растворялись только в концентрированных кислотах. Традиционным способом удалось получить растворимые в полярных апротонных растворителях бис(трифторметил)бифенилсодержащие ПАМ только благодаря использованию олигомерных диаминов и дополнительного введения имидных гетероциклов в состав указанных полимеров.

Реализовать возможности монофторбензольных фрагментов наряду с (гексафторизопропилиден)дифенильными удалось только в рамках альтернативного способа синтеза ПАМ. Включение в состав ПАМ простых эфирных и уретановых групп или имидных гетероциклов повышает растворимость и вязкость фторсодержащих полимеров. Помимо этого наличие простых эфирных групп в составе ПАМ позволяет значительным образом улучшить их механические свойства, а введение сложноэфирных связей придает конечным полимерам жидкокристаллические свойства. Присутствие же имидных блоков ведет к низким значениям коэффициента теплового расширения и водопоглощения, высокому модулю упругости при растяжении и диэлектрической проницаемости. Сле-

Литература

1. Banerjee S., Gutch P.K., Saxena C. // Des. Mon. & Polym. – 1999. – 2, N 2. – P. 135–142.

2. *Grigoras M., Catanescu C.O. //* J. Macromol. Sci. Polymer. Rev. – 2004. – **44**, N 2. – P. 131–137.

3. *Iwan A., Sek D.* // Progr. Polymer. Sci. – 2008. – **33**, N 3. – P. 289–345.

4. *Kumar S., Dhar D.N., Saxena P. //* J. Sci. Ind. Res. – 2009. – **68**, N 3. – P. 181–187.

5. *Hussein M.A., Abdel-Rahman M.A., Asiri A.M., Alamry K.A., Aly K.I. //* Des. Mon. & Polym. – 2012. – **15**, N 5. – P. 431–463.

6. Danhauser V.J., Manecke G. // Macromol. Chem. – 1965. – **84**, N 1. – P. 238–249.

7. *Tokarzewski L., Ragan-Kusa Z. //* Macromol. Chem. – 1981. – **182**, N 11. – P. 2997–3002.

8. *Patel M., Patel S. //* J. Polym. Sci.: Polym. Chem. Ed. – 1982. – **20**, N 8. – P. 1985–1992.

9. Saegusa Y., Sekiba K., Nakamura S. // J. Polym. Sci., Part A: Polym. Chem. – 1990. – **28**, N 13. – P. 3647– 3659.

10. Saegusa Y., Koshikawa T., Nakamura S. // J. Polym. Sci., Part A: Polym. Chem. – 1992. – **30**, N 7. P. 1369– 1373.

11. *Saegusa Y., Takashima T., Nakamura S. //* J. Polym. Sci., Part A: Polym. Chem. – 1992. – **30**, N 7. – P. 1375–1381.

12. *Saegusa Y., Kuriki M., Nakamura S. //* Macromol. Chem. Phys. – 1994. – **195**, N 5. – P. 1877–1889.

13. *Yang C.-J., Jenekhe S.A.* // Macromolecules. – 1995. – **28**, N 4. – P. 1180–1196.

14. *Tsai F.-C., Chang C.-C., Liu C.-L., Chen W.-C., Jenekhe S.A.* // Macromolecules. – 2005. – **38**, N 5. – P. 1958–1966.

15. *Millaud B., Strazielle C. //* Polymer. – 1979. – **20**, N 5. – P. 563–570.

дует отметить, что до настоящего времени в рамках альтернативного способа не были получены ПАМ, содержащие перфторированные ароматические фрагменты.

Таким образом, среди фторсодержащих ПАМ наиболее разработанными и перспективными являются полимеры с CF₃-группами в составе (гексафторизопропилиден)дифенильного фрагмента. Менее разработанным является направление синтеза ПАМ с перфторароматическими фрагментами, реализация возможностей которых, очевидно, связана с разработкой способов повышения их растворимости, а также возможностью дальнейшей модификации.

Фторсодержащие ПАМ представляют интерес в качестве фотонных, диэлектрических, жидкокристаллических, электрон-транспортных и нелинейно-оптических материалов, которые могут быть перспективны в электротехнике и оптоэлектронике.

16. *Preston J.* // Angew. Makromolek. Chem. – 1982. – **109**, N 1. – P. 1–19.

17. *Morgan P.W., Kwolek S.L., Pletcher T.C. //* Macromolecules. – 1987. – **20**, N 4. – P. 729–739.

18. *Wojtkowski P.W.* // Macromolecules. – 1987. – **20**, N 4. – P. 740–748.

19. *Li C.H., Chang T.C.* // J. Polym. Sci., Part A: Polym. Chem. – 1990. – **28**, N 13. – P. 3625–3638.

20. *Li C.H., Chang T.C.* // J. Polym. Sci., Part A: Polym. Chem. – 1991. – **29**, N 3. – P. 361–367.

21. *Li C.H., Hsu K.Y., Chang T.C.* // J. Polym. Sci., Part A: Polym. Chem. – 1991. – **29**, N 10. – P. 1447–1454.

22. *Li C.-H., Chang T.-C.* // Eur. Polym. J. – 1991. – **27**, N 1. – P. 35–39.

23. Catanescu O., Grigoras M., Colotin G., Dobreanu A., Hurduc N., Simionescu C.I. // Eur. Polym. J. – 2001. – **37**, N 11. – P. 2213–2216.

24. Jung S.-H., Lee T.-W., Kim Y.C., Suh D.H., Cho H.N. // Opt. Mater. – 2003. – **21**, N 1. – P. 169–173.

25. *Shevchenko V., Tkachenko I., Shekera O. //* Polymer Science, Ser. B. – 2010. – **52**, N 7-8. – P. 408–430.

26. *Liu F., Hashim N.A., Liu Y., Abed M., Li K. //* J. Membr. Sci. – 2011. – **375**, N 1. – P. 1–27.

27. Shukla D., Negi Y.S., Uppadhyaya J.S., Kumar V. // Polymer Rev. – 2012. – **52**, N 2. – P. 189–228.

28. *Cui Z., Drioli E., Lee Y.M.* // Prog. Polym. Sci. – 2014. – **39**, N 1. – P. 164–198.

29. *Li Y., Su Y., Zhao X., Zhang R., Zhao J., Fan X., Jiang Z. //* J. Membr. Sci. – 2014. – **455**. – P. 15–23.

30. *Kumar Gutch P., Banerjee S., Gupta D., Jaiswal D. /* / J. Polym. Sci., Part A: Polym. Chem. – 2001. – **39**, N 3. – P. 383–388.

31. *Grimm B., Krьger R.-P., Schrader S., Prescher D.* // J. Fluorine Chem. – 2002. – **113**, N 1. – P. 85–91.

32. Choi E.-J., Ahn J.-C., Chien L.-C., Lee C.-K., Zin W.-

C., Kim DC., Shin ST. // Macromolecules. – 2004. –	1455–1461.
37 , N 1. – P. 71–78.	39. Kausar A., Zulfiqar S., Ahmad Z., Sarwar M.I. //
33. Fukukawa KI., Shibasaki Y., Ueda M. // Polymer	Polym. Degrad. Stab. – 2010. – 95, N 9. – P. 1826–1833.
2004. – 36 , N 6. – P. 489–494.	40. Sun S.J., Hsu K.Y., Chang T.C. // J. Polym. Sci., Part
34. Krebs F.C., Jurgensen M. // Synt. Met 2004	A: Polym. Chem. – 1995. – 33, N 5. – P. 787–796.
142 , N 1. – P. 181–185.	41. Aly K., Abbady M., Mahgoub S., Hussein M. // Express
35. Ishii J., Tanaka Y., Hasegawa M. // High Perform.	Polym. Lett. – 2007. – 1, N 4. – P. 197–207.
Polym. – 2010. – 22, N 2. – P. 145–158.	42. Fokin A.V., Kolomiets A.F., Vasil'ev N. // Russ. Chem.
36. Tamareselvy K., Venkatarao K., Kothandaraman H. /	Rev. – 1984. – 53 , N 3. – P. 238–430.
/ Makromol. Chem.– 1990. – 191 , N 6. – P. 1231–1242.	43. Paleos C.M. // Chem. Soc. Rev 1985 14, N 1
37. Gauderon R., Plummer C.J., Hilborn J.G., Knauss	P. 45–67.
D.M. // Macromolecules 1998 31, N 2 P. 501-	44. Abis L., Arrighi V., Cimecioglu A., Higgins J., Weiss
507.	<i>R</i> . // Eur. Polym. J. – 1993. – 29 , N 2. – P. 175–181.
38. Butt M.S., Akhter Z., Zafar-Uz-Zaman M., Siddiqi	45. Pron A., Rannou P. // Prog. Polym. Sci 2002 27,
H.M. // Colloid Polym. Sci 2008 286, N 12 P.	N 1. – P. 135–190.
	Поступила в редакцию 15 апреля 2014 г.

Фторофмісні поліазометини: синтез та властивості

Я.Л. Кобзар, І.М. Ткаченко, О.В. Шекера, В.В. Шевченко

Інститут хімії високомолекулярних сполук НАН України 48, Харківське шосе, Київ, 02160, Україна

Розглянуто загальні підходи до отримання поліазометинів, які містять у своєму складі фторовані фрагменти. Запропонована класифікація фторовмістних поліазометинів, яка основана на способі введення до складу полімерів азометинової групи. В рамках запропонованої класифікації представлено підходи щодо отримання фторовмістних поліазометнів традиційним способом (взаємодія діамінів з діальдегідами) і альтернативним способом (використання азометиновмістних мономерів). Проаналізовано вплив природи фторованої компоненти (трифторметил-вмістні, перфторароматичні, монофторбензолні фрагменти), функціональних груп (гідроксильні, естерні, імідні та ін.) і фрагментів (оксифенільні, аліфатичні та ін.), а також способів формування полімерного ланцюга на властивості синтезованих поліазометинів.

Ключові слова: фторовмісні поліазометини, фторовмісні мономери, синтез, структура, властивості.

The fluorine-containing polyazomethines: synthesis and properties

Ya.L. Kobzar, I.M. Tkachenko, O.V. Shekera, V.V. Shevchenko

Institute of Macromolecular Chemistry NAS of Ukraine 48, Kharkivske shose, Kyiv, 02160, Ukraine

General approaches for obtaining of polyazomethines containing fluorinated fragments have been considered in the review. The classification of fluorinated polyazomethines based on the routs of introduction of azomethines groups in polymer chain has been suggested. The effective approaches to obtain polyazomethines containing fluorinated fragments by traditional method (interaction of diamines with dialdehydes) and alternative method (application of azomethine-containing monomers) have been presented in the frame of proposed classification. Influence of nature of fluorinated components, such as trifluoromethyl-containing, perfluoroaromatic, monofluorobenzene moieties, and functional groups, such as hydroxy, ester, imide, etc, and fragments, such as hydroxyphenyl, aliphatic, etc, and methods of polymer chain forming on the properties of synthesized polyazomethines has been analyzed.

Keywords: fluorinated polyazomethines, fluorinated monomers, synthesis, structure, properties.