2025 (1) 1
https://doi.org/10.15407/polymerj.46.04.243
BIODEGRADABLE POLYMERS. PART1: POLYMERS FROM NATURALLY RENEWABLE RAW MATERIALS
VALENTYNA BOIKO* (ORCID: 0000-0002-5527-0468), SERGII RIABOV** (ORCID: 0000-0003-2996-3794), LARYSA KOBRINA (ORCID: 0000-0001-6801-0801), TETIANA DMYTRIEVA(ORCID: 0000-0002-3526-8395)
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine,
*e-mail: valboyko54@gmail.com
**e-mail: sergii.riabov@gmail.com
Polym. J., 2024, 46, no. 4: 243-258.
Section: Review.
Language: Ukrainian.
Abstract:
At the current stage of science and technology development, the production of biodegradable polymers (BPs) and biodegradable polymeric materials (BPMs) for general industrial, agricultural, or household applications has become highly relevant. These materials retain their properties throughout their service life and, upon its completion, gain the ability to decompose under the influence of natural factors, integrating into the metabolic processes of the biosystem. This review analyzes scientific and technical literature from the past decade on the production of biodegradable polymers and polymeric materials.
The classification of biodegradable polymers (BPs) and biodegradable polymeric materials (BPMs) is provided based on the type of degradation: materials capable of complete mineralization, such as natural polymers (cellulose, starch); synthetic polymers prone to biological degradation (polyesters, polyamides); and materials subject to biological erosion, such as blends of synthetic and natural polymers. The types of BPs are summarized according to the origin of their raw materials and the methods of their synthesis.
This classification serves as the foundation for the series of review articles dedicated to biodegradable polymers and biodegradable polymeric materials. The first part of the review focuses on BPs and BPMs derived from naturally renewable sources – polymers that are integral to living plant and animal organisms. Emphasis is placed on polysaccharides and proteins.
Among polysaccharides, the review provides a detailed examination of cellulose and its derivatives (ethers, acetates, nanocellulose); starch (including thermoplastic starch); chitin and its derivative chitosan; pectins; and alginic acids. Among proteins, animal-derived proteins such as collagen and gelatin, as well as plant-derived protein – soybean protein are discussed. For each of these substances, their molecular structure, physicochemical properties, methods of production, fields of application, and mechanisms of degradation in nature are presented.
Using cellulose as an example, a general strategy for creating cellulose-containing biodegradable polymers is proposed based on the correlation between biological degradation and the molecular structure of its derivatives. The review analyzes 98 scientific and technical publications, concluding that biodegradable polymeric materials derived from naturally renewable sources offer an environmentally safer alternative to traditional synthetic plastics made from petroleum and petrochemicals.
Key words: biodegradable polymers, biodegradable polymeric materials, naturally renewable raw materials, polysaccharides, proteins, cellulose, cellulose derivatives, starch, chitin, chitosan, pectins, alginic acids, collagen, gelatin, soybean protein.
REFERENCES
1. International Organization for Standardization (ISO). ISO Methods: 17088 (2021) Plastics – Organic recycling – Specifications for compostable plastics.ISO, Geneva, Switzerland.
2. ASTM International, ASTM D6400-21 Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilitie. ASTM International, West Conshohocken, PA, USA.
3. European standart. BS EN 13432:2000: Packaging. Requirements for packaging recoverable through composting and biodegradation. Test scheme and evaluation criteria for the final acceptance of packaging- Original English text of CSN EN Standard (2007). Brussels, EU.
4. European standart. CSN EN 14995 Plastics – Evaluation of compostability – Test scheme and specifications – Original English text of CSN EN Standard (2006). Brussels, EU.
5. Pat. 3950282 USA, IC2 C08L 1/02. Polyanhydroglucose biodegradable polymers and process of preparation . D. R.Gilbert, V.T.Stannett , S. L. Kim. Publ.13.04.1976.
6. Pat. 4337181 USA ,IC3 C08L 3/02. Biodegradable starch-based blown films. H. F. Otey, R. P.Westhoff. Publ. 29.06.1982.
7. Pat. 4379138 USA ,I C3 C08G 63/08. Biodegradable polymers of lactones. C. G. Pitt , A. E.Schindler. Publ.05.04.1983.
8. Towards Common Ground − Meeting Summary of the International Workshop on Biodegradability. Annapolis, Maryland, USA, 20−21st October 1992.
9. Market study on Bio-based Polymers in the world. Capacities, production and applications: Status Quo and Trends towards 2020. Ed. by Mirabal A. S., Scholz L., Carus M. Nova – Instinute for ecology and innovation GmbH, Germany, 2013.
10. Bioplastics market data. 2018. https://www.european-bioplastics.org/wpcontent/uploads/2016/02/Report_Bioplastics-Market-Data-2018.
11. Bastioli C. (Ed.). Handbook of biodegradable polymers. Walter de Gruyter GmbH & Co KG. 2020: 572. ISBN 1501511963, 9781501511967.
12. Rai P., Mehrotra S., Priya S., Gnansounou E., Sharma, S. K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource technology, 2021. 325:124739. https://doi.org/10.1016/j.biortech.2021.124739.
13. Bahl S., Dolma J., Singh J. J., Sehgal S. Biodegradation of plastics: A state of the art review. Materials Today: Proceedings, 2021, 39: 31–34. https://doi.org/10.1016/j.matpr.2020.06.096.
14. Pires J. R. A., Souza V. G. L, Fuciños P., Pastrana L., Fernando A. L. Methodologies to assess the biodegradability of bio-based polymers—current knowledge and existing gaps. Polymers. 2022. 14, 7: 1359. https://doi.org/10.3390/polym14071359.
15. Kumar R., Sadeghi K., Jang, J., Seo J. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Science of the Total Environment, 2023, 882: 163446. https://doi.org/10.1016/j.scitotenv.2023.163446.
16. Cakmak O. K. Biodegradable polymers—A review on properties,processing, and degradation mechanism. Circular Economy and Sustainability,2024, 4, 1: 339-362. https:/doi.org/10.1007/s43615-023-00277.
17. Yin G. Z., Yang X. M. Biodegradable polymers: a cure for the planet, but a long way to go. Journal of Polymer Research, 2020, 27, 2: 38. https://doi.org/10.1007/s10965-020-2004-1.
18. Panchal S. S., Vasava D. V. Biodegradable polymeric materials: synthetic approach. ACS omega, 2020, 5, 9: 4370–4379. https://doi.org/10.1021/acsomega.9b04422.
19. Lin Y., Kouznetsova T. B., Craig S. L. Mechanically gated degradable polymers. Journal of the American Chemical Society, 2020, 142, 5: 2105–2109. https://doi.org/10.1021/jacs.9b13359.
20. Maraveas C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers, 2020, 12, 5: 1127. https://doi.org/10.3390/polym12051127.
21. García-Depraect O., Bordel S., Lebrero R., Santos-Beneit F., Börner R. A., Börner T., Muñoz R. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineeredproducts. Biotechnology Advances, 2021, 53: 107772. https://doi.org/10.1016/j.biotechadv.2021.107772.
22. Fiandra E. F., Shaw L., Starck M., McGurk C. J., Mahon C. S. Designing biodegradable alternatives to commodity polymers. Chemical Society Reviews, 2023, 52: 8085–8105. https://doi.org/10.1039/D3CS00556A.
23. Riabov S.V. Structural and chemical modification of polysaccharides and polymer composites on their base. Thesis for a Doctor Degree in speciality 02.00.06. Macromolecular chemistry. Kyiv. 2007. https://nrat.ukrintei.ua/searchdoc/0507U000562.
24. Simon J., Miller H.P., Koch R., Miiller V. Thermoplastic and biodegradable polymers of cellulose. Polymer Degradation and Stab., 1998, 59: 107–115. https://doi.org/10.1016/S0141-3910(97)00151-1.
25. Heinze T., Liebert T.F., Pfeiffer K.S., Hussain M.A. Unconventional cellulose esters: synthesis, characterization and structure–property relations.Cellulose, 2003, 10: 283–296. https://doi.org/10.1023/A:1025117327970.
26. Edgar K.J., Buchanan C.M., Debenham J.S., Rundquist P.A., Seiler B.D., Shelton M.S., Tindall D. Advances in cellulose ester performance and application. Prog. Polym. Sci., 2001, 26: 1605–1688. https://doi.org/10.1016/S0079-6700(01)00027-2.
27. Fischer S., Thümmler K., Volkert B., Hettrich K., Schmidt I., Fischer K. Properties and Applications of Cellulose Acetate. Macromolecular Symposia, 2008, 262, 1: 89–96. https://doi.org/10.1002/masy.200850210.
28. Yadav N., Hakkarainen M. Degradable or not? Cellulose acetate as a model for complicated interplay between structure, environment and degradation. Chemosphere, 2021, 265: 128731. https://doi.org/10.1016/j.chemosphere.2020.128731.
29. Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem.Soc.Rev., 2014, 43:1519–1542. https://doi.org/10.1039/C3CS60204D.
30. Zinge C., Kandasubramanian B. Nanocellulose based biodegradable polymers. European Polymer Journal, 2020, 133: 109758. https://doi.org/10.1039/C3CS60204D.
31. Crépy L., Chaveriat L., Banoub J., Martin P., Joly N. Synthesis of Cellulose Fatty Esters as Plastics – Influence of the Degree of Substitution and the Fatty Chain Length on mechanical properties. ChemSusChem., 2009, 2: 165–170. https://doi.org/10.1002/cssc.200800171.
32. Hirose D., Kusuma S.B.W., Ina D., Wada N., Takahashi K. Direct one-step synthesis of a formally fullybio-based polymer frombio-based polymercellulose and cinnamon flavor. Green Chem. , 2019, 21:4927–4931. https://doi.org/10.1039/C9GC01333D.
33. Glasser W.G., McCartney B.K., Samaranayake G. Cellulose derivatives with low degree of substitution. 3. The Biodegradability of Cellulose Esters using enzym eassey. Biotechnol. Prog.,1994, 10: 214–219. https://doi.org/10.1021/bp00026a011.
34. Jensen M. B., De Jonge N., Dolriis M. D., Kragelund C., Fischer C. H., Eskesen M. R., Kofoed M. V. W. Cellulolytic and xylanolytic microbial communities associated with lignocellulose-rich wheat straw degradation in anaerobic digestion. Frontiers in Microbiology, 2021, 12: 645174. https://doi.org/10.3389/fmicb.2021.645174
35. Weimer P. J. Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms, 2022, 10, 12: 2345. https://doi.org/10.3390/microorganisms10122345.
36. Schut E. G. Environmental degradation of cellulose under anaerobic conditions. Bioresources, 2022, 17, 4: 6953. https://doi.org/10.15376/biores.17.4.6953-6969.
37. Datta R. Enzymatic degradation of cellulose in soil: A review. Heliyon, 2024, 10, 1: e24022. https://doi.org/10/j.heliyon.2024.e24022.
38. Atkin N. J., Cheng S. L., Abeysekera R. M., Robards A. W. Localisation of Amylose and Amylopectin in Starch Granules Using Enzyme-GoldLabelling. Starch,1999,51, 5: 163–172. https://doi.org/10.1002/(SICI)1521-379X(199905)51:5<163::AID-STAR163>3.0.CO;2-F.
39. Modified starch. General technical conditions: DSTU 4380:2005. – [Effective from 2005-02-28] . K. Derzhspozhivstandard of Ukraine, 2006. IV, 28 p. (National Standard of Ukraine)
40. Radchenko O.A.,Sinelnikov S.I., Riabov S.V., Goncharenko L.A. Chemical and physical modification of stach: modern trends. Polimernyi Zhurnal, 2019, 41, 2: 77-95. https://doi.org/10.15407/polymerj.41.02.077.
41. Yu X., Chen L., Jin Z., Jiao A. Research progress of starch-based biodegradable materials: a review. J Mater.Sci., 2021, 56: 11187–11208. https://doi.org/10.1007/s10853-021-06063-1.
42. Diyana Z. N., Jumaidin R., Selamat, M. Z., Ghazali I., Julmohammad N., Huda N., Ilyas R. A. Physical properties of thermoplastic starch derived from natural resources and its blends: A review. Polymers, 2021, 13, 9: 1396. https://doi.org/10.3390/polym13091396.
43. Dmitrieva T.V., Krymovska S.K., Glieva G.E., Riabov S.V. Thermoplastic stach as a component of film-forming composition with degradable properties, Polimernyi Zhurnal, 2021, 43, 2: 73–78. https://doi.org/10.15407/polymerj.43.02.073.
44. Bulatović V. O., Mandić V., Kučić Grgić D., Ivančić A. Biodegradable polymer blends based on thermoplastic starch. Journal of Polymers and the Environment, 2021, 29, 2: 492–508. https://doi.org/10.1007/s10924-020-01874-w
45. de Freitas A. D. S. M., da Silva A. P. B., Montagna L. S., Nogueira I. A., Carvalho N. K., de Faria V. S., dos Santos N. B., Lemes A. P. Thermoplastic starch nanocomposites: sources, production and applications–a review. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 7: 900–945. https://doi.org/10.1080/09205063.2021.2021351.
46. Bastiaens L., Soetemans L., D’Hondt E., Elst K. Sources of Chitin and Chitosan and their Isolation. Chitin and Chitosan, 2019, 1: 1–34. https://doi.org/10.1002/9781119450467.ch1.
47. Iber B. T., Kasan N. A., Torsabo D., Omuwa J. W. A review of various sources of chitin and chitosan in nature. Journal of Renewable Materials, 2022, 10, 4: 1097. https://doi.org/10.32604/jrm.2022.018142.
48. ZargarV., Asghari M., Dashti A. A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications.ChemBioEng Rev., 015, 2, 3: 204–226. https://doi.org/10.1002/cben.201400025.
49. Sanchez-Salvador J.L., Balea A., Monte M.C., Negro C., Blanco A. Chitosan grafted/cross-linked with biodegradable polymers: a review. Int. J. of biologicalmacromol., 2021, 178: 325–343. https://doi.org/10.1016/j.ijbiomac.2021.02.200.
50. Juang R-S., Shao H-J. A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan.Water Research, 2002, 36, 12: 2999–3008. https://doi.org/10.1016/S0043-1354(01)00537-1.
51. Joseph S.M., Krishnamoorthy S., Paranthaman R., Moses A., Anandharamakrishnan C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydrate Polymer Technol. And Applicatations, 2021, 2: 100036. https://doi.org/10.1016/j.carpta.2021.100036.
52. Sherin P., Lyczko N.,Gopakumar D., Maria H.J., Nzihou A., Thomas S. Chitin and Chitosan Based Composites for Energy and Environmental Applications: A Review. Waste Biomass Valor . 2021, 12: 4777–4804. https://doi.org/10.1007/s12649-020-01244-6.
53. Sirajudheen P., Poovathumkuzhi N. C., Vigneshwaran S., Chelaveettil B. M.,Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water comprehensive review. Carbohydrate Polymer, 2021, 273:118604. https://doi.org/10.1016/j.carbpol.2021.118604.
54. Baharlouei P., Rahman A. Chitin and chitosan: prospective biomedical applications in drug delivery, cancer treatment, and wound healing. Marine Drugs, 2022, 20, 7: 460. https://doi.org/10.3390/md20070460.
55. Piekarska K., Sikora M., Owczarek M., Jóźwik-PruskaJ., Wiśniewska-Wrona, M. Chitin and chitosan as polymers of the future—obtaining,modification, life cycle assessment and main directions of application.Polymers,2023, 15, 4: 793. https://doi.org/10.3390/polym15040793.
56. Thakur B.R., Singh R.K., Handa A.K., Rao M. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37: 47–73. https://doi.org/10.1080/10408399709527767
57. Belkheiri A., Forouhar A., Ursu A. V., Dubessay P., Pierre G., Delattre C., Djelveh G., Abdelkafi S., Hamdami N., Michaud Ph. Extraction, characterization, and applications of pectins from plant by-products. Applied Sciences, 2021, 11, 14: 6596. https://doi.org/10.3390/app11146596.
58. May C.D. Industrial pectins: Sources, production and applications.Carbohydr. Polym.,1990, 12: 79–99. https://doi.org/10.1016/0144-8617(90)90105-2.
59. Ibarra-Rodríguez D., Lizardi-Mendoza J., . López-Maldonado E.A., Oropeza-Guzmán M.T. Capacity of ‘nopal’ pectin as a dual coagulant-flocculant agent for heavy metals removal.Chemical Engineering Journal, 2017, 323: 19–28. https://doi.org/10.1016/j.cej.2017.04.087.
60. Wang R., Liang R., Dai T., Chen J., Shuai X., Liu C. Pectin-based adsorbents for heavy metal ions: A review. Trends in Food Science & Technology, 2019, 91: 319–329. https://doi.org/10.1016/j.tifs.2019.07.033.
61. Dranca F., Oroian M. Extraction, purification and characterization of pectin fromalternative sources with potential technologicalapplications. Food Res. Int., 2018, 113: 327–350. https://doi.org/10.1016/j.foodres.2018.06.065.
62. Petkowicz C.; Vriesmann L.;Williams P. Pectins from food waste: Extraction,characterization andproperties of watermelonrind pectin. Food Hydrocoll.,2017, 65: 57–67. https://doi.org/10.1016/j.foodhyd.2016.10.040.
63. Espitia P. J. P., Du W. X., de Jesús Avena-Bustillos R., Soares N. D. F. F., McHugh T. H. Edible films from pectin: Physical Edible films from pectin: Physical-mechanical and antimicrobial properties- A review. Food hydrocolloids, 2014, 35: 287–296. https://doi.org/10.1016/j.foodhyd.2013.06.005.
64. Dmitrieva T.V., Kobylinsky S.M., Boyko V.V., Riabov S.V., Bortnitskiy Krymovska S.K.,Nevmerzihitska G. F., Komliakova O.M. The influence of pectin based metal-complexes on degradation of polyethylene. Polimernyi Zhurnal, 2015, 37, 3: 263–268.
65. Li D. Q., Li J., Dong H. L., Li X., Zhang J. Q., Ramaswamy S., Xu F. Pectin in biomedical and drug delivery applications: A review. Intern. J. of Biological Macromol.,2021, 185: 49-65. https://doi.org/10.1016/j.ijbiomac.2021.06.088.
66. Mellinas C., Ramos M., Jiménez A., Garrigós M.C. Recent trends in the use ofpectin from agro-waste residues as a natural-basedbiopolymer for food packaging applications. Materials, 2020. 13:673. https://doi.org/10.3390/ma13030673.
67. Hakim M. M., PatelI. C. A review on phytoconstituents of marine brown algae. Future Journal of Pharmaceutical Sciences, 2020. 6: 1–11. https://doi.org/10.1186/s43094-020-00147-6.
68. Bojorges H., López-Rubio A., Martínez-Abad A., Fabra M. J. Overview of alginate extraction processes: Impact on alginate molecular structure and techno- functional properties. Trends in Food Science & Technology, 2023, 140: 104142. https://doi.org/10.1016/j.tifs.2023.104142.
69. Hay I.D.,Ur Rehman Z., Ghafoor A., Rehm B. H. A. Bacterial biosynthesis of alginates. Journal of Chemical Technology & Biotechnology, 2010, 85, 6: 752–759. https://doi.org/10.1002/jctb.2372
70. Leea K. Y., Mooneya D.J. Alginate: properties and biomedical applications. Progress in Polymer Science, 2012, 37: 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003.
71. Aarstad O. A., Tøndervik A., Sletta H., Skjak-Bræk G. Alginates equencing: an analysis of block distribution in alginates using specific alginate degradingenzymes. Biomacromolecules, 2012, 13, 1: 106–116. https://doi.org/10.1021/bm2013026.
72. Orel L. A., Sinelnikov S. I., Kobrina L.V., Boyko V.V., Riabov S.V. Study of the release kinetics of metoprolol from polymer matrices based on sodium alginate.Voprosy khimii i khimicheskoi tekhnologii, 2017, 6: 32–38.
73. Abdul Khalil H.P.S., Chong E.W.N., Owolabi F.A.T., Asniza M., Tye Y.Y.,Tajarudin H.A., Rizal S. Microbial-induced CaCO3 filled seaweed-based filmfor green plasticulture application. Journal of Cleaner Production, 2018, 199:150–163. https://doi.org/10.1016/j.jclepro.2018.07.111.
74. Abdullah N. A., Mohamad Z., Khan Z. I., Jusoh M., Zakaria Z. Y., Ngadi N. Alginate based sustainable films and composites for packaging: A review. Chemical engineering trans., 2021, 83: 271–276. https://doi.org/10.3303/CET2183046/.
75. Raus R. A., Nawawi W. M. F. W., Nasaruddin, R. R. Alginate and alginate composites for biomedical applications. Asian Journal of Pharmaceutical Sciences, 2021. 16, 3: 280–306. https://doi.org/10.1016/j.ajps.2020.10.001.
76. Hurtado A., Aljabali A. A., Mishra V., Tambuwala M. M., Serrano-Aroca Á. Alginate: Enhancement strategies for advanced applications. International Journal of Molecular Sciences, 2022, 23, 9: 4486. https://doi.org/10.3390/ijms23094486.
77. Łętocha A., Miastkowska M., Sikora E. Preparation and characteristics of alginate microparticles for food, pharmaceutical and cosmetic applications. Polymers, 2022, 14, 18: 3834. https://doi.org/10.3390/polym14183834.
78. Branden C., Tooze J. Introduction to Protein Structure (2nd Ed.). New York: Garland Publishing, 1999: 424.
79. Shoulders M. D., Raines R. T. Collagen structure and stability. Annual review of biochemistry, 2009, 78: 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
80. Noorzai S., Verbeek C.J.R., Lay M.C., Swan J. Collagen extraction from various waste bovine hide sources. Waste and Biomass Valorization, 2020, 11, No 11: 5687–5698. https://doi.org/10.1007/s12649-019-00843-2.
81. Koliada M.K. Creation of complex ecologically safe technological processes of collagen-containing waste processing. Thesis of the candidate of technical science in ecological safety. Lviv, 2021. https://nrat.ukrintei.ua/searchdoc/0421U101935
82. O’Sullivan A., Shaw N. B., Murphy S. C., Van de Vis J. W., van Pelt-Heerschap H., Kerry J. P. Extraction of collagen from fish skins and its use in the manufacture of biopolymer films. Journal of aquatic food product technology, 2006, 15, 3: 21–32. https://doi.org/10.1300/J030v15n03_03.
83. Xu J., Liu F., Wang T., Goff H.D., Zhong F. Fabrication of films with tailored properties by regulating the swelling of collagen fiber through pH adjustment. Food Hydrocolloids, 2020, 108: 106016. https://doi.org/10.1016/j.foodhyd.2020.106016
84. Sionkowska A., AdamiakK., Musiał K., Gadomska M .Collagen based materials in cosmetic applications: A review. Materials, 2020, 13, 19: 4217. https://doi.org/10.3390/ma13194217.
85. Rezvani Ghomi E., Nourbakhsh N., Akbari Kenari M., Zare M., Ramakrishna S. Collagen based biomaterials for biomedical applications. Journal of biomedical materials research Part B: applied biomaterials. 2021, 109, 12: 1986–1999. https://doi.org/10.1002/jbm.b.34881.
86. Cui P., Shao T., Liu W., Li M., Yu M., Zhao W., Song V., Ding Y., Liu J. Advanced review on type II collagen and peptide: preparation, functional activities and food industry application. Critical Reviews in Food Science and Nutrition, 2023. 1–18. https://doi.org/10.1080/10408398.2023.2236699/
87. The science and Technology of Gelatin. Еd. Ward A. G., Courts A. New York: Academic press. 1977.
88. Alipal J., Pu’Ad N. M., Lee, T. C., Nayan N. H. M., Sahari N., Basri H.,Idris M.I., Abdullah H. Z. A review of gelatin: Properties, sources, process, applications, and commercialisation. Materials Today: Proceedings, 2021.42:240–250. https://doi.org/10.1016/j.matpr.2020.12.922.
89. Rigueto C. V. T., Rosseto M., Alessandretti, I., de Oliveira R., WohlmuthD. A. R., Menezes J. F., LossR.A., Dettmer A.,Pizzutti I. R. Gelatin films from wastes: A review of production, characterization, and application trends in food preservation and agriculture. Food Research International, 2022, 162: 112114. https://doi.org/10.1016/j.foodres.2022.112114.
90. Mushtaq F., Raza Z. A., Batool S. R., Zahid M., Onder O. C., Rafique A., Nazeer M. A. Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. International journal of biological macromolecules, 2022, 218: 601–633. https://doi.org/10.1016/j.ijbiomac.2022.07.168/
91. Lu Y., Luo Q., Chu Y., Tao N., Deng S., Wang L, Li, L. Application of gelatin in food packaging: A review. Polymers, 2022, 14, 3: 436. https://doi.org/10.3390/polym14030436.
92. Rigueto C. V. T., Nazari M. T., Massuda L. Á., Ostwald B. E. P., Piccin J. S., Dettmer A. Production and environmental applications of gelatin-based composite adsorbents for contaminants removal: a review. Environmental Chemistry Letters, 2021, 19: 2465–2486. https://doi.org/10.1007/s10311-021-01184-0.
93. Kumar R., Liu D., Zhang L. Advances in proteinos materials. Journal of Biobased Materials and Bioenergy, 2008, 2, 1: 1–24. https://doi.org/10.1166/jbmb.2008.204.
94. Thakur M. K., Thakur V. K., Gupta R. K., Pappu A. Synthesis and applications of biodegradable soy based graft copolymers: a review, ACS Sustainable Chemistry & Engineering, 2016, 4, 1: 1–17. https://doi.org/10.1021/acssuschemeng.5b01327.
95. Ma L., YangY., Yao J., Shao Z., Huang Y., Chen, X. Selective chemical modification of soy protein for a tough and applicable plant protein-based material. Journal of Materials Chemistry B, 2015, 3, 26: 5241–5248. https://doi.org/10.1039/C5TB00523J.
96. Tian H., Guo G., Fu X., Yao Y., Yuan L., Xiang, A. Fabrication, properties and applications of soy-protein-based materials: A review. International journal of biological macromolecules, 2018, 120: 475–490. https://doi.org/10.1016/j.ijbiomac.2018.08.110.
97. Tansaz S., Boccaccini A. R. Biomedical applications of soy protein: A brief overview. Journal of Biomedical Materials Research Part A, 2016, 104, 2: 553–569. https://doi.org/10.1002/jbm.a.35569.
98. Lamaming S. Z., Lamaming J., Rawi N. F. M., Hashim R., Kassim M. H. M., Hussin M. H., Hiziroglu S. Improvements and limitation of soy protein based adhesive: A review. Polymer Engineering & Science, 2021, 61, 10: 2393–2405. https://doi.org/10.1002/pen.25782.