2025 (1) 4

https://doi.org/10.15407/polymerj.46.04.274

STRUCTURE OF XANTHAN HETEROPOLYSACCHARIDE IN BULK AND SOLUTIONS: A NEW MODEL OF COIL STRUCTURE

MATVII TOVSTENKO-ZABELIN1 (ORCID: 0009-0003-9351-5504), TETIANA ZELTONOZHSKAYA1 (ORCID: 0000-0001-5272-4244), NATALIIA PERMYAKOVA1 (ORCID: 0000-0002-7622-1059), LIUDMYLA VRETIK2 (ORCID: 0000-0003-3456-7518), LIUDMYLA GRYSHCHUK3 (ORCID: 0009-0005-7325-5754), VALERII KLEPKO1 (ORCID: 0000-0001-8089-8305), DMYTRO KLYMCHUK4 (ORCID: 0000-0002-7076-8213)

1Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, 02155 Kyiv, Ukraine

2Taras Shevchenko National University of Kyiv, Faculty of Chemistry, Department of Macromolecular Chemistry, 60 Volodymyrska St., 01033 Kyiv, Ukraine

3Leibniz-Institut für Verbundwerkstoffe GmbH, Kaiserslautern, Germany

4M.G. Kholodny Institute of Botany of the NAS of Ukraine, 2 Tereshchenkivska St., 01601, Kyiv, Ukraine

Polym. J., 2024, 46, no. 4: 274-287.

Section: Structure and properties.

Language: Ukrainian.

Abstract:

The main molecular characteristics, structure in bulk and in aqueous solutions, as well as stability to thermo-oxidative degradation of the natural heteropolysaccharide xanthan, a product of the vital activity of the bacterium Xanthomonas campestris, were studied using the methods of viscometry, potentiometric titration, FTIR spectroscopy, DTGA, DSC, TEM and DLS. It has been shown that xanthan macromolecules have a high molecular weight, MvK=1170 kDa, and contain a large number of hydroxyl, carboxyl and charged carboxylate groups. An amorphous structure of a xanthan sample in the bulk state with a low glass transition temperature (Tg=27.6 °C) and a high content of non-freezing immobilized (9.6 wt.%) and adsorbed (1 wt.%) water was determined. The processes of loss of immobilized and adsorbed water during heating of the xanthan sample occurred with heat absorption, the temperatures of their maxima were Tmax=70.0–73.8 °C and 122.8 °C, respectively. The presence of 3 main stages of thermal-oxidative destruction of xanthan, starting at Td=157 °C and ending at Tend=700 °C, is shown. The destruction process at all stages developed with the release of heat, which indicates the high ability of xanthan macromolecules to oxidize. The temperatures of the maximums of individual stages of destruction were Tmax=223, 347 and 600 °C. A compact coil structure of xanthan macromolecules was established in salt-free aqueous solutions at temperatures of 20–25 °C. The small size of the macrocoils: dav=33.8 nm (TEM) or 35.5 nm (DLS), the high density of the “core” and the high ζ-potential on their surface (ζav= −73.9 mV) are shown. On this basis, a new micelle-like model of xanthan macrocoils is proposed, in which the “core” is formed by separated and hydrogen-bonded segments of the main chain, and the side branches of the polysaccharide with charged carboxyl and carboxylate groups come to the surface of the coil and form a developed double electrical layer.

Key words: xanthan, molecular parameters, bulk structure, thermal stability, new model of macrocoils in water.

REFERENCES
1. Jansson, P. E., Kenne, L., Lindberg, B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 1975, 45(1), 275–282. https://doi.org/10.1016/S0008-6215(00)85885-1.
2. Melton, L. D., Mindt, L., Rees, D. A. Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: evidence from partial hydrolysis studies. Carbohydrate Research, 1976, 46(2), 245–257. https://doi.org/10.1016/S0008-6215(00)84296-2 .
3. Morris, E. R., Rees, D. A., Young, G., Walkinshaw, M. D., Darke, A. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host. Journal of Molecular Biology, 1977, 110(1), 1–16. https://doi.org/10.1016/S0022-2836(77)80095-8.
4. Milas, M., Rinaudo, M. Conformational investigation on the bacterial polysaccharide xanthan. Carbohydrate Research, 1979, 76(1), 189–196. https://doi.org/10.1016/0008-6215(79)80017-8.
5. Holzwarth, G., Prestridge, E. B. Multistranded helix in xanthan polysaccharide. Science, 1977, 197(4305), 757–759. https://doi.org/10.1126/science.887918.
6. Holzwarth, G. M. Is xanthan a wormlike chain or a rigid rod? Solution Properties of Polysaccharides, 1981, 15–23. https://doi.org/10.1021/bk-1981-0150.ch002.
7. Whitcomb, P. J., Macosko, C. W. Rheology of xanthan gum. Journal of Rheology, 1978, 22(5), 493–505. https://doi.org/10.1122/1.549485.
8. Brunchi, C. E., Morariu, S., Bercea, M. Intrinsic viscosity and conformational parameters of xanthan in aqueous solutions: Salt addition effect. Colloids and Surfaces B: Biointerfaces, 2014, 122, 512–519. http://dx.doi.org/10.1016/j.colsurfb.2014.07.023.
9. Permyakova, N., Zheltonozhskaya, T., Ignatovskaya, M., Maksin, V., Iakubchak, O., & Klymchuk, D. Stimuli-responsive properties of special micellar nanocarriers and their application for delivery of vitamin E and its analogues. Colloid and Polymer Science, 2018, 296, 295–307. https://doi.org/10.1007/s00396-017-4242-2.
10. Lopez, C. G., Matsumoto, A., Shen, A. Q. Dilute polyelectrolyte solutions: recent progress and open questions. Soft Matter, 2024, 20(12), 2635–2687. https://doi.org/10.1039/d3sm00468f .
11. Wu, M., Qu, J., Tian, X., Zhao, X., Shen, Y., Shi, Z., Ma, T. Tailor-made polysaccharides containing uniformly distributed repeating units based on the xanthan gum skeleton. International journal of biological macromolecules, 2019, 131, 646–653. https://doi.org/10.1016/j.ijbiomac.2019.03.130.
12. Su, L., Ji, W. K., Lan, W. Z., Dong, X. Q. Chemical modification of xanthan gum to increase dissolution rate. Carbohydrate Polymers, 2003, 53(4), 497–499. https://doi.org/10.1016/S0144-8617(02)00287-4.
13. Matyshevskaya, M. S., Osadchaya, A. I., Gvozdyak, R. I. IR-spectra of exopolysaccharides in certain bacteria of the genus Xanthomonas. Mikrobiologicheskii Zhurnal, 1985, 47(4): 18–22
14. Pretsch, E., Bühlmann, P., Affolter, C., Pretsch, E., Bhuhlmann, P., Affolter, C. Structure determination of organic compounds, 2000, p. 108. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-662-62439-5.
15. Şolpan, D., Torun, M. Investigation of complex formation between (sodium alginate/acrylamide) semi-interpenetrating polymer networks and lead, cadmium, nickel ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 268(1–3), 12–18. https://doi.org/10.1016/j.colsurfa.2005.04.035.
16. Rowland, S. Water in polymers / S. Rowland – ACS Symposium Series; American Chemical Society: Washington, DC, 1980: 573. https://doi.org/10.1021/bk-1980-0127.fw001.
17. Kutsevol N. V., Zheltonozhskaya T. B., Demchenko O. V., Kunitskaya L. R., Syromyatnikov, V. G. Effect of the structure of poly (vinyl alcohol)-graft-polyacrylamide copolymers on their thermooxidative stability. Polymer science. Series A, 2004, 46(5), 518–525.
18. Denisov E.T. Okisleniye i destruktsiia karbotsepnykh polimerov. L.: Khimiia, 1990. 287.
19. Wellington, S. L. Biopolymer solution viscosity stabilization—Polymer degradation and antioxidant use. Society of Petroleum Engineers Journal, 1983, 23(06), 901–912. https://doi.org/10.2118/9296-PA .
20. Zohuriaan, M. J., Shokrolahi, F. J. P. T. Thermal studies on natural and modified gums. Polymer testing, 2004, 23(5), 575–579. https://doi.org/10.1016/j.polymertesting.2003.11.001.
21. Srivastava, A., Mishra, V., Singh, P., Srivastava, A., Kumar, R. Comparative study of thermal degradation behavior of graft copolymers of polysaccharides and vinyl monomers. Journal of thermal analysis and calorimetry, 2012, 107(1), 211–223. https://doi.org/10.1007/s10973-011-1921-y.
22. Faria, S., de Oliveira Petkowicz, C. L., De Morais, S. A. L., Terrones, M. G. H., De Resende, M. M., de Franca, F. P., Cardoso, V. L. Characterization of xanthan gum produced from sugar cane broth. Carbohydrate polymers, 2011, 86(2), 469–476. https://doi.org/10.1016/j.carbpol.2011.04.063 .
23. Soares, R. M. D., Lima, A. M. F., Oliveira, R. V. B., Pires, A. T. N., Soldi, V. Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer degradation and stability, 2005, 90(3), 449–454. https://doi.org/10.1016/j.polymdegradstab.2005.04.007 .
24. Talik, P., & Hubicka, U. The DSC approach to study non-freezing water contents of hydrated hydroxypropylcellulose (HPC) A study over effects of viscosity and drug addition. Journal of Thermal Analysis and Calorimetry, 2018, 132, 445–451. https://doi.org/10.1007/s10973-017-6889-9.
25. Basu, S., Shivhare, U. S., & Mujumdar, A. S. Moisture adsorption isotherms and glass transition temperature of xanthan gum. Drying Technology, 2007, 25(9), 1581–1586. https://doi.org/10.1080/07373930701539795.
26. Kocherbitov, V., Ulvenlund, S., Briggner, L. E., Kober, M., Arnebrant, T. Hydration of a natural polyelectrolyte xanthan gum: Comparison with non-ionic carbohydrates. Carbohydrate polymers, 2010, 82(2), 284–290. https://doi.org/10.1016/j.carbpol.2010.04.055.
27. Brunchi, C. E., Bercea, M., Morariu, S., Avadanei, M. Investigations on the interactions between xanthan gum and poly (vinyl alcohol) in solid state and aqueous solutions. European Polymer Journal, 2016, 84, 161–172. https://doi.org/10.1016/j.eurpolymj.2016.09.006 .
28. Garcıa-Ochoa, F., Santos, V. E., Casas, J. A., Gómez, E. Xanthan gum: production, recovery, and properties. Biotechnology advances, 2000, 18(7), 549–579. https://doi.org/10.1016/S0734-9750(00)00050-1.
29. Washington, G. E., Brant, D. A. Model for the Temperature-Induced Conformational Change in Xanthan Polysaccharide. Biomacromolecules, 2021, 22(11), 4691-4700. https://doi.org/10.1021/acs.biomac.1c00974.
30. Tinland, B., Rinaudo, M. Dependence of the stiffness of the xanthan chain on the external salt concentration. Macromolecules, 1989, 22(4), 1863–1865.
https://doi.org/10.1021/ma00194a058.
31. Stetefeld, J., McKenna, S. A., Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical reviews, 2016, 8, 409–427. https://doi.org/10.1007/s12551-016-0218-6.
32. Seright R. S., Henrici B.J., Xanthan stability at elevated temperatures. SPE, Reservoir Engineering, 1990, 5(01), 52–60. https://doi.org/10.2118/14946-PA .