2025 (3) 4
https://doi.org/10.15407/polymerj.47.03.134
POLYURETHANES AS EFFECTIVE MATRICES OF SOLID-STATE ELEMENTS IN ORGANIC DYE LASERS
LIUDMYLA KOSYANCHUK1 (ORCID: 0000-0002-3617-9538), VOLODYMYR BEZRODNYI2 (ORCID: 0000-0001-9965-8707), NATALIIA BABKINA1 (ORCID:0000-0002-1803-0887), NATALIIA KOZAK1 (ORCID: 0000-0001-6200-4048), TAMARA BEZRODNA2 (ORCID: 0000-0003-1935-7475), OKSANA ANTONENKO1 (ORCID: 0000-0002-6451-7944), OLEKSANDR BROVKO1 (ORCID: 0000-0003-0238-1137)
1Institute of Macromolecular Chemistry, NAS of Ukraine, 48, Kharkivske Highway, Kyiv, 02155, Ukraine
2Institute of Physics NAS of Ukraine, 46, Nauky Ave., Kyiv, 03680, Ukraine
Polimernyi Zhurnal, 2025, 47, no. 3: 134-148
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Studies on the photooxidative destruction of two polyurethane materials, characterized by different chemical natures, as well as the effect of polarity on the degree of association of dyes of different classes in them, are presented. The higher threshold for single-pulse laser destruction in polyurethane based on aliphatic diisocyanate and polyesterdiol is due to its lower susceptibility to damage upon irradiation. The higher polarity of the polymer and the possibility of forming a covalent bond between the dye and macromolecule lead to a higher ratio of monomeric to dimeric dye forms, which depends significantly on the intermolecular interactions between the components. These interactions also affect the structure of dye-doped polyurethanes. The presented data demonstrate the effectiveness of using these polyurethanes as matrices for solid-state laser elements on organic dyes.
Keywords: polyurethanes, dyes, radiation resistance, polarity, covalent bond.
REFERENSES
1. Soffer B.H., McFarland B.B. Continuously tunable, narrow-band organic dye lasers. Applied Physics Letters, 1967, 10, 10: 266–267. https://doi.org/10.1063/1.1754804.
2. Peterson O.G., Snavely B.B. Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate. Applied Physics Letters, 1968, 12, 7: 238–240. https://doi.org/10.1063/1.1651972.
3. Chen J., Kung H.-C., Yau H.-F., Liu H.-P., Chen T.-C., Cheng C.-C. Passive Q-switches for Nd: hosted Solid State Lasers. Optical Reviev, 2000, 7, 6: 511–519. https://doi.org/10.1007/s10043-000-0511-1.
4. Bezrodnyi V.I., Ishchenko A.A. High-energy single pulse and multi-spike operation with a passive polymer Q-switch. Optics & Laser Technology, 2002, 34, 1: 7–13. https://doi.org/10.1016/S0030-3992(01)00080-9.
5. Bezrodnyi V. I., Derevyanko N. A., Ishchenko A. A., Kropachev A. V. Highly efficient passive Q switches for a neodymium laser based on thiopyrylotricarbocyanine dyes. Quantum Electronics, 2009, 39, 1: 79–83. https://doi.org/10.1070/QE2009v039n01ABEH013832.
6. Cazeca M.J., Jiang X., Kumar J., Tripathy S.K. Epoxy matrix for solid-state dye laser applications Applied Optics 1997, 36, 21: 4965–4968. https://doi.org/10.1364/AO.36.004965.
7. Alkallas F.H., AL-Rebdi T. A., Masilamani V. Photophysics of Energy Transfer Between Rh 6G and Oxz 9 Dyes in New Solid Matrices. Sensors & Transducers, 2018, 226, 10: 62–70.
8. Singha S., Kanetkarb V.R., Sridhara G., Muthuswamyb V., Rajab K. Solid-state polymeric dye. J. Luminescence, 2003, 101: 295–291. https://doi.org/10.1016/S0022-2313(02)00571-9.
9. Al-shamiri Hamdan A.S., Khedr M.A., Sabry M.M. Energy transfer and photostability of Rh-6G and Rh-B doped in polyacrylamide polymer. Optik, 2019, 182: 716–726. https://doi.org/10.1016/j.ijleo.2019.01.082.
10. Tunable Laser Applications. J. Duarte (Ed.), Boca Raton: CRC Press, 2008. ISBN: 1420060090. https://doi.org/10.1201/9781420060584.
11. Singh S., Kanetkar V.R., Sridhar G., Muthuswamy V., Raja K. Solid-state polymeric dye lasers. Journal of Luminescence, 2003, 101, 4: 285–291. https://doi.org/10.1016/S0022-2313(02)00571-9.
12. Rong-Wei F., Xiao-Hui L., Sai-Sai Y., Yu-Gang J., Yuan-Qin X., De-Ying C. Solid Dye Lasers Based on 2-Hydroxypropyl Methacrylate and Methyl Methacrylate Copolymers. Сhinese Physics Letters, 2008, 25, 2: 700–702. https://doi.org/10.1088/0256-307X/25/2/094.
13. Al-Shamiri Hamdan. A.S., Azzouz I.M., Salah Shafik M., Badr Y.A. Glycidyl Methacrylate as a New Host Material for Laser Dyes. Journal of Applied Polymer Science, 2007, 103, 1: 59–63. https://doi.org/10.1002/app.23964.
14. Bezrodna T.V., Bezrodnyi V.I., Negriyko A.M., Kosyanchuk L.F. Spectral, photophysical and lasing properties of Rhodamine dyes in the polyurethane acrylate matrix. Optics and Laser Technology, 2021, 138: 106868. https://doi.org/10.1016/j.optlastec.2020.106868.
15. Bezrodna T.V., Bezrodnyi V.I., Negriyko A.M., Kosyanchuk L.F., Antonenko O.I., Brovko O.O. Solvent effects on photophysical properties of organic dyes in the polymer matrix. Polimernyi Zhurnal, 2020, 42, 2: 104–113. https://doi.org/10.15407/polymerj.42.02.104.
16. Rahn M.D., King T.A., Gorman A.A., Hamblett I. Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers. Applied Optics, 1997, 36, 24: 5862–5871. https://doi.org/10.1364/AO.36.005862 .
17. Bezrodnyi V.I., Ishchenko A.A. Laser media based on coloured polyurethane. Quantum Electronics, 2000, 30, 12: 1043–1048. https://doi.org/10.1070/ QE2000v030n12ABEH001862.
18. Bondar M V., Przhonskaya O.V. Spectral-luminescence and lasing properties of the pyrromethene dye PM-567 in ethanol and in a polymer matrix. Quantum Electronics, 1998. 28, 9: 753–756. https://doi.org/10.1070/QE1998v028n09ABEH001318.
19. Nikolaev S.V. Pozhar V.V., Dzyubenko M.I. Research of new solid-state active media on the basis of industrial polyurethane compounds, activated by dyes. Telecommunications and Radio Engineering, 2013, 72, 5: 434–445. https://doi.org/10.1615/TelecomRadEng.v72.i5.60.
20. Kosyanchuk L.F. Stratilat M.S. Babkina N.V. Bezrodna T.V. Menzheres G.Ya. Influence of irradiation on the stability of polyurethane matrices in laser elements. Journal of Applied Spectroscopy, 2017, 84, 2: 332–336. https://doi.org/10.1007/s10812-017-0472-9.
21. Buchachenko A.L., Kovarskii A.L., Wassermann A.M. Study of polymers by paramagnetic probe methods: review. In book: Advances in Polymer Sciences. Z.A. Rogovin (Ed.), New York: Halsted Press, Wiley, 1974: 26–42.
22. Kozak N.V. The method of nitroxyl probes for the study of molecular dynamics and heterogeneous structure of metal-containing polymers. Polimernyi Zhurnal, 2009, 31, 3:207–213.
23. Fugimoto E., Nakamura K. Analysis of Photodegradation Mechanism of Polyurethane Using FT-IR-ATR and DMA. Japanese Journal of Polymer Science and Technology, 1994, 51, 9: 612–618. https://doi.org/10.1295/koron.51.612
24. Thaplyal B.P., Chandra R. Advances in Photodegradation and stabilization of polyurethanes. Prog. Pol. Sci., 1990, 15, 5: 735–750. https://doi.org/10.1016/0079-6700(90)90010-X.
25. Wilhelm C., Rivaton A., Gardette J.L. Infrared analysis of the photochemical behaviour of segmented polyurethanes 3. Aromatic diisocyanate based polymers. Polymer, 1998, 39, 5: 1223–1232. https://doi.org/10.1016/S0032-3861(97)00353-4.
26. Wilhelm C., Gardette J.L. Infrared analysis of the photochemical behaviour of segmented polyurethanes: aliphatic poly(ether-urethane)s. Polymer, 1998, 39, 24: 5973–5980, https://doi.org/10.1016/S0032-3861(97)10065-9.
27. Wilhelm C., Gardette J.L. Infrared analysis of the photochemical behaviour of segmented polyurethanes: 1. Aliphatic poly(ester-urethane). Polymer, 1997, 38, 16: 4019–4031. https://doi.org/10.1016/S0032-3861(96)00984-6.
28. Xie F., Zhang T., Bryant P., Kurusingal V., Colwell J.M., Laycock B. Degradation and stabilization of polyurethane elastomers. Progress in Polymer Science, 2019, 90: 211–268. https://doi.org/10.1016/j.progpolymsci.2018.12.003.
29. Ranby B., Rabek J.F. Photodegradation, Photo-oxidation, and Photostabilization of Polymers: Principles and Applications: London, New York, Wiley. A Wiley-Interscience Publ., 1975: 573. ISBN: 0471707880.
30. Grassie N., Scott G. Polymer degradation and stabilization: New York, New Rochelle, Melbourne, Sydney. Cambridge Univesity Press, 1988: ISBN: 0-521-24961-9.
31. Kawski A. On the Estimation of Excited-State Dipole Moments from Solvatochromic Shifts of Absorption and Fluorescence Spectra. Zeitschrift für Naturforschung A, 2002, 57, 5: 255–262. https://doi.org/10.1515/zna-2002-0509.
32. Ishchenko A.A. Molecular engineering of dye-doped polymers for optoelectronics. Polym. Adv. Technol., 2002, 13, 10–12: 744–752. https://doi.org/10.1002/pat.269.
33. Sastre R., Costela A. Polymeric Solid-state Dye Lasers. Advanced Materials, 1995, 7, 2: 198–202. https://doi.org/10.1002/adma.19950070222.
34. Costela A., Florido F., Garcia-Moreno I., Duchowicz R., Amat-Guerri F., Figuera J. M., Sastre R. Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G. Appl. Phys. B, 1995, 60, 4: 383–389. https://doi.org/10.1007/bf01082275.
35. Kosyanchuk L.F, Bezrodna T.V., Antonenko O.I., Bezrodnyi V.I., Negriyko A.M., Brovko O.O. Interaction peculiarities of the Rhodamine B dye with polyurethane diisocyanates of different chemical types. Molecular Crystals and Liquid Crystals, 2022, 747, no. 1: 120–130. https://doi.org/10.1080/15421406.2022.2066798.
36. Rabek J.F., Fouassier J.P. Lasers in Polymer Science and Technology, v.4: CRC Press, Taylor & Francis Group., 1st Edition, 1989: 264.
37. Chirila T.V., Constable I.J., Saarloos P.P., Barrett G.D. Laser-induced damage to transparent polymers: chemical effect of short-pulsed (Q-switched) Nd:YAG laser radiation on ophthalmic acrylic biomaterials: I. A review. Biomaterials. 1990, 11, 5: 305–312. https://doi.org/10.1016/0142-9612(90)90106-Z.
38. Ishchenko A.A., Grabchuk G.P. Physical and chemical problems of the creation of photostable converters of light energy on the basis of dyed polymers. Theor. Exp. Chem., 2009, 45: 143–167. https://doi.org/10.1007/s11237-009-9078-5.
39. Kwak S., Kim N.R., Lee K., Yi J., Kim J.H., Bae B. Enhancement of fluorescence and lasing properties of covalent bridged fluorescent dye in organic–inorganic hybrid materials. J. Sol-Gel Sci. Technol., 2011, 60: 137–143.https://doi.org/10.1007/s10971-011-2569-6.
40. Schab-Balcerzak E., Konieczkowska J., Siwy M., Sobolewska A., Wojtowicz M., Wiacek M. Comparative studies of polyimides with covalently bonded azo-dyes with their supramolecular analoges: Thermo-optical and photoinduced properties. Opt. Mater., 2014, 36, 5: 892–902. https://doi.org/10.1016/j.optmat.2013.12.017.
41. Kosyanchuk L., Bezrodnа T., Stratilat M., Menzheres G., Kozak N., Todosiichuk T. Peculiarities of interactions between 6-aminophenalenone dye and polyurethane matrix. J. Polym. Research, 2014, 21, 10: 564. https://doi.org/10.1007/s10965-014-0564-7.
42. Bezrodnyi V., Stratilat М., Kosyanchuk L., Negriyko А., Klishevych G., Todosiichuk Т. Solvation effects on spectral and photophysical properties of phenalenone dyes in polyurethane polymers. J. Polym. Research, 2016, 23, 6: 106. https://doi.org/10.1007/s10965-016-0987-4.
43. Bezrodna T.V., Ishchenko A.A, Kosyanchuk L.F., Derevyanko N.A., Antonenko O.I., Bezrodnyi V.I. Luminescence spectral peculiarities of polymethine dye, bonded covalently to polyurethane matrix. Molecular crystals and Liquid crystals, 2022, 748, 1: 90–98. https://doi.org/10.1080/15421406.2022.2067664.
