2025 (3) 5
https://doi.org/10.15407/polymerj.47.03.149
DAMPING AND MECHANICAL PROPERTIES OF POLYURETHANE MATERIALS BASED ON A MIXTURE OF PREPOLYMERS
NATALIIA BABKINA* (ORCID: 0000-0002-1803-0887), OKSANA ANTONENKO
(ORCID:0000-0002-6451-7944), LIUDMYLA KOSYANCHUK (ORCID: 0000-0002-3617-9538), LIUBOV VORONTSOVA (ORCID: 0000-0002-3792-9409), OLEKSANDR BROVKO** (ОRCID: 0000-0003-0238-1137)
Institute of Macromolecular Chemistry of the NAS of Ukraine
48 Kharkivske Highway, Kyiv, 02155, Ukraine
*E-mail: nabab1906@gmail.com
**E-mail:brovko@nas.gov.ua
Polimernyi Zhurnal, 2025, 47, no. 3: 149-159
Section: Structure and properties.
Language: Ukrainian.
Abstract:
A method for obtaining polyurethane (PU) materials based on a mixture of prepolymers with different compositions is proposed to extend and specifically control the temperature range of effective damping. The initial polyurethanes include PU-1, which contains prepolymer-1 based on an oligoester with M = 1500 and an aliphatic diisocyanate; and PU-2, which contains prepolymer-2 based on an oligoether with M = 1000 and an aromatic diisocyanate. Additionally, PU compositions based on mixtures of prepolymer-1 and prepolymer-2 in ratios of 70/30, 50/50, and 30/70 wt.% were synthesized. Light microscopy showed that the initial PUs have a homogeneous structure, while the base-mixed prepolymer PU compositions display a distinct heterophase structure. The damping efficiency of the synthesized PU materials was assessed through their viscoelastic properties obtained using the dynamic mechanical analysis (DMA). Specifically, the mechanical loss parameter (tan δ) was used to define the effective damping region as the temperature range where tan δ ≥ 0.3. The initial PUs exhibited effective damping within the temperature ranges of −28 °C to 2 °C for PU-1 and −5 °C to 42 °C for PU-2. The temperature range for effective damping in the mixed prepolymer PU compositions extends from −22 °C to 37 °C, covering a range where neither of the initial PUs alone exhibits high damping capacity. It has been demonstrated that the effective damping range of PU composites can be adjusted by changing the ratio of prepolymer-1 to prepolymer-2. Further research has shown that PU compositions based on a mixture of prepolymers form a more cross-linked network. This correlates with an increase in chemical cross-links between hardener molecules and topological entanglements among macrochains. Depending on their prepolymer ratio, the mechanical properties of PU composites are intermediate between those of PU-1 and PU-2. Therefore, producing PU materials from a mixture of prepolymers with different chemical compositions is an effective method for developing damping materials.
Keywords: polyurethane, prepolymer mixture, damping properties, mechanical properties, temperature range of effective damping.
REFERENCES
1. Chung D.L. Materials for vibration damping. J. Mater. Sci., 2001, 36, 24: 5733–5737. https://doi.org/10.1023/A:1012999616049.
2. Zhou X.Q, Yu D.Y, Shao X.Y, Zhang S.Q, Wang S. Research and applications of viscoelastic vibration damping materials: A review. Comp.Struct., 2016, 136: 460–480. https://doi.org/10.1016/j.compstruct.2015.10.014.
3. Nielsen L.E., Landel R.F. Mechanical Properties of Polymers and Composites. New York, USA: Marcel Dekker, 1994: 255.
4. Jones David I.G.Handbook of Viscoelastic Vibration Damping. New York: Wiley and Sons, 2001: 416. ISBN978-0-471-49248-1.
5. Čulin J. Interpenetrating polymer network composites containing polyurethanes designed for vibration damping. Polimery, 2016, 61, 3: 159–165. https://doi.org/10.14314/polimery.2016.159.
6. Moradi G., Nassiri P., Ershad-Langroudi A., Monazzam M.R. Acoustical, damping and thermal properties of polyurethane/poly(methyl methacrylate)-based semi-interpenetrating polymer network foams. Plast. Rubber Compos., 2018, 47, 5: 221–231. https://doi.org/10.1080/14658011.2018.1468146.
7. Qu C., Li X., Yang Z., Zhang X., Wang T., Wang Q., Chen S. Damping, thermal, and mechanical performances of a novel semi-interpenetrating polymer networks based on polyimide/epoxy. J. Appl. Polym. Sci., 2019, 136, 41: 48032. https://doi.org/10.1002/app.48032.
8. Babkina N., Lipatov Yu., Alekseeva T. Damping properties of composites based on interpenetrating polymer networks formed in the presence of compatibilizing additives. Mech. Comp. Mater., 2006, 42, 4: 385–392. https://doi.org/10.1007/s11029-006-0048-x.
9. Wan S., Zhou S., Huang X., Chen S., Cai S., He X., Zhang R. Effect of Aromatic Petroleum Resin on Damping Properties of Polybutyl Methacrylate. Polymers, 2020, 12: 543. https://doi.org/10.3390/polym12030543.
10. Tang X., Yan X. A review on the damping properties of fiber-reinforced polymer composites. J. Ind. Text., 2020, 49, 6: 693–721. https://doi.org/10.1177/1528083718795914.
11. Li Y., Car S., Huang X. Multi-scaled enhancement of damping property for carbon fiber reinforced composites. Comp.Sci.Tech., 2017, 143: 89–97. https://doi.org/10.1016/j.compscitech.2017.03.008.
12. Ma C., Zhang W.L., Wang L.H., Guo Z., Jiang Y., Shan Y., Chen J.Y., Wang Y., Sin L.T. Preparation and characterization of a graphene hybridizing polyurethane damping composite. Sci. Eng. Compos. Mater., 2022, 29, 1: 140–150. https://doi.org/10.1515/secm-2022-0014.
13. Lv X., Huang Z., Shi M., Fan Y., Gao G. Composition Distribution, Damping and Thermal Properties of the Thickness-Continuous Gradient Epoxy/Polyurethane Interpenetrating Polymer Networks. Appl. Sci., 2017, 7, 2: 135. https://doi.org/10.3390/app7020135.
14. Wang D., Zhang H., Guo J., Cheng B., Cao Y., Lu S., Zhao N., Xu J. Biomimetic Gradient Polymers with Enhanced Damping Capacities. Macromol. Rapid Commun., 2016, 37, 7: 655–661. https://doi.org/10.1002/marc.201500637.
15. Ding X., Liu T., Fu B., Han J. Study on the damping properties of multi-layered gradient materials based on organic hybrids. Appl. Mech. Mater., 2013, 268-270: 119–122. https://doi.org/10.4028/www.scientific.net/AMM.268-270.119.
16. Shen M., Xia L., Feng Q., Zhang Jie., Li J., Guo S. Damping characteristics of a multilayered constrained beam using viscoelastic butyl rubber layer with wide temperature range. Mater. Express., 2021, 11, 3: 372–380. https://doi.org/10.1166/mex.2021.1920.
17. Wang Y, Tang K, Sheng Z, Wang J. Designed Multi-Layer Structure Gradient Polymer: Structure Evolution and Damping Mechanism. Polym. Sci. Ser. A., 2021, 63, 5: 451–464. https://doi.org/10.1134/S0965545X21050151.
18. Xu C., Qiu T., Deng J., Meng Y., He L., Li X. Dynamic mechanical study on multilayer core-shell latex for damping applications. Prog. Org. Coat., 2012, 74, 1: 233–239. https://doi.org/10.1016/j.porgcoat.2011.12.014.
19. Qin R., Huang R., Liu X. Use of gradient laminating to prepare NR/ENR composites with excellent damping performance. Mater Design., 2018, 149: 43–50. https://doi.org/10.1016/j.matdes.2018.03.063.
20. Lipatov Yu.S., Kercha Yu.Yu., Sergeyeva L.M. Structure and properties of polyurethanes. Kiev: Nauk.dumka, 1970: 280.
21. Sonnenchein M.F. Polyurethanes: Science, Technology, Markets, and Trends. New York: John Wiley and Sons, 2014: 432. ISBN-10 1118737830.
22. Eling B., Tomović Ž., Schädler V. Current and Future Trends in Polyurethanes: An Industrial Perspective. Macromol. Chem. Phys., 2020, 221, 14: 2000114. https://doi.org/10.1002/macp.202000114.
23. Nakamura M., Aoki Y., Enna G., Oguro K., Wada H. Polyurethane damping material. J. Elast. Plast., 2014, 47, 6: 515–522. https://doi.org/10.1177/0095244314526739.
24. Beniah G., Liu K., Heath W.H., Miller M.D., Scheidt K.A., Torkelson J.M. Novel thermoplastic polyhydroxyurethane elastomers as effective damping materials over broad temperature ranges. Eur. Polym. J., 2016, 84: 770–783. https://doi.org/10.1016/j.eurpolymj.2016.05.031.
25. Hu S., Wu Y., Fu G., Shou T., Zhai M., Yin D., Zhao X.. Bio-Based Polyurethane and Its Composites towards High Damping Properties. Int. J. Mol. Sci., 2022, 23, 12: 6618. https://doi.org/10.3390/ijms23126618.
26. Lu X., Xu M., Sheng Y., Li Z., Li H. Preparation of polyurethanes with broad damping temperature range and self-healing properties. J. Elast. Plast., 2020, 52, 5: 410–431. https://doi.org/10.1177/0095244319863153.
27. Xiaolin J., Rui Q., Minhui W., Min X., Yeming S., Xun L. Controllable wide temperature range and high damping polyurethane elastomer based on disulfide bond and dangling chain. Polym. Adv. Technol., 2021, 32, 5: 2185–2196. https://doi.org/10.1002/pat.5250.
28. Mirhosseini M.M., Haddadi-Asl V., Jouibari I. S. How the soft segment arrangement influences the microphase separation kinetics and mechanical properties of polyurethane block polymers. Materials Research Express, 2019, 6, 8: 085311. https://doi.org/10.1088/2053-1591/ab1d73.
29. Zhang Q., Lin X., Chen W., Jiang K., Han D. Applications of characterization methods in polyurethane materials: analysis of microphase-separated structures. Appl. Spectrosc. Rev., 2022, 57, 2: 153–176. https://doi.org/10.1080/05704928.2021.1975126.
30. Feng Y., Zhou H., Zhang X., Li Y., Li Y. Preparation and characterization of polyurethane damping materials derived from mixed-base prepolymers containing numerous side methyls. e-Polymers, 2015, 15, 5: 323–327. https://doi.org/10.1515/epoly-2015-0097.
31. Liu Y., Liu L., Liang Y. Relationship between structure and dynamic mechanical properties of thermoplastic polyurethane elastomer containing bi-soft segment. J. Appl. Polym. Sci., 2020, 137, 45: 49414. https://doi.org/10.1002/app.49414.
32. Kasprzyk P., Sadowska E., Datta J. Investigation of Thermoplastic Polyurethanes Synthesized via Two different Prepolymers.J. Polym. Environ., 2019, 27, 11: 2588–2599. https://doi.org/10.1007/S10924-019-01543-7.
33. Cui Y., Wang H., Pan H., Zong C.The effect of mixed soft segment on the microstructure of thermoplastic polyurethane. J. Appl. Polym. Sci., 2021, 138, 45: 51346. https://doi.org/10.1002/app.51346.
34. Babkina N., Antonenko O., Kosyanchuk L., Brovko O. Damping efficiency of two-layer polyurethane composites. Polimernyi Zhurnal, 2021, 43, 1: 12–18. https://doi.org/10.15407/polymerj.43.01.012.
35. Babkina N., Antonenko O., Kosyanchuk L., Vorontsova L., Babich O., Brovko O.Effect of polyurethane material design on damping ability. Polym. Adv. Technol., 2023, 34, 11: 3426–3437. https://doi.org/10.1002/pat.6156.
36. Lee D.-K., Tsai H.-B.Properties of Segmented Polyurethanes Derived from Different Diisocyanates. J. Appl. Polym. Sci., 2000, 75, 1: 167–174. https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1<167::AID-APP19>3.0.CO;2-N.
37. Gomez C.M., Gutierrez D., Asensio M., Costa V., Nohales A. Transparent thermoplastic polyurethanes based on aliphatic diisocyanates and polycarbonate diol., J. Elast. Plast., 2017, 49, 1: 77–95. https://doi.org/10.1177/0095244316639633.
38. Prisacariu C., Olley R.H., Caraculacu A.A., Bassett D.C., Martin C.The effect of hard segment ordering in polyurethane elastomers obtained by using simultaneously two types of diisocyanates. Polymer, 2003, 44, 18: 5407–5421. https://doi.org/10.1016/S0032-3861(03)00489-0.
