2025 (4) 1

https://doi.org/10.15407/polymerj.47.04.185

FUNCTIONAL BIODEGRADABLE MATERIALS BASED ON NATURAL AND SYNTHETIC POLYMERS WITH ANTIBACTERIAL ACTION

TETIANA DMYTRIEVA (ORCID: 0000-0002-3526-8395), GALYNA GLIEVA (ORCID: 0000-0002-2916-0257), VOLODYMYR BORTNYTSKYI (ORCID: 0000-0003-4954-6533), PETRO LOHVYNENKO (ORCID: 0000-0003-0721-8128), SERGII RIABOV (ORCID: 0000-0003-2996-3794)

e-mail:  Riabov.S@nas.gov.ua

Institute of Macromolecular Chemistry, NAS of Ukraine

48, Kharkivske Highway, Kyiv, 02155, Ukraine

Abstract

A literature review was conducted on the production of biodegradable film-forming materials made from naturally renewable raw materials with antibacterial properties. The main component ensuring the biodegradability of the compositions is thermoplastic starch. The review also describes the use of synthetic polymers as film-forming components in these compositions, including polybutylene adipate terephthalate, polylactic acid, polycaprolactone, polyethylene, polyvinyl alcohol, and polyvinylpyrrolidone. The antibacterial properties of these materials are achieved by adding chitosan, which is made soluble through treatment with acids such as acetic, lactic, and formic acid, as well as by incorporating medicinal drugs, silver nanoparticles, or essential oils.

Keywords: thermoplastic starch, synthetic polymers, chitosan, bactericidal additives.

REFERENCES

1. Zhai X., Wang W., Zhang H., Dai Y., Dong H., Hou H. Effects of high starch content on the physicochemical properties of starch/PBAT nanocomposite films prepared by extrusion blowing. Carbohydrate Polymers, 2020: 239. https://doi.org/10.1016/j.carbpol.2020.116231.
2. Phothisarattana D., Wongphan P., Promhuad K., Promsorn J., Harnkarnsujarit N. Blown film extrusion of PBAT/TPS/ZnO nanocomposites for shelf-life extension of meat packaging. Colloids and Surfaces B: Biointerfaces, 2022: 214. (1):112472 https://doi.org/10.1016/j.colsurfb.2022.112472.
3. Wongphan P., Panrong T., Harnkarnsujarit N. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film. Food Packaging and Shelf Life, 2022, 32. 100844 https://doi.org/10.1016/j.fpsl.2022.100844.
4. Sytar V.I., Sukhyy K.M., Mitina N.B., Garmash S.M., Lisichenko B.O. The preparation of biodegradable composite materials based on polyvinyl alcohol. ISSN 0321-4095, Voprosy Khimii i Khimicheskoi Tekhnologii, 2020, 1: 86–91. https://doi.org/10.32434/0321-4095-2020-128-1-86-91.
5. Krykhovets O. V., Slobodianyk V. G. Research of Polyvinyl Alcohol-Based Films as Environmentally Friendly Flexible Packaging. Bulletin of Vinnytsia Polytechnic Institute, 2023, 2: 15–20. https://doi.org/10.31649/1997-9266-2023-167-2-15-20.
6. Kulish B. I., Levytskyi B. V., Masyuk A. S., Levytskyi V. Ye., Zemke V. M. Features of starch modification for the creation of polymer composites. Chemistry, Technology and Application of Substances, 2023, 6, 2: 145–150. https://doi.org/10.23939/ctas2023.02.145.
7. Semenyuk N.B., Dudok G.D., Komarovska O.Z., Skorokhoda T.V., Nechay Y.R. Silver-containing polyvinylpyrrolidone composites with antibacterial properties. Bulletin of the National University “Lviv Polytechnic”, 2014: 444–447.
8. Dudok Н. D., Semenyuk N. B., Skorokhoda T. V., Melnyk Yu. Ya., Shalata V. Ya. Research of the regularities of obtaining silver nanoparticles with applying of polyvinylpyrolidone and their effect on composite’s fungibactericidal properties. Chemistry, Technology and Application of Substances, 2021, 4, 1: 237–241. https://doi.org/10.23939/ctas2021.01.237.
9. Demchenko V.L., Iurzhenko M.V., Kobylinskyi S.M., Goncharenko L.A. Syntesis and characterization of nanocomposites based on polylactide/silver nanoparticles, obtained by thermochemical reduction of Ag+ ions by natural or synthetic polymers. Chemistry, Physics and Technology of Surface, 2021, 12, 4: 365–373. https://doi.org/10.15407/hftp12.04.365.
10. Rybalchenko N., Hnatiuk Т., Artiukh L., Naumenko К., Zaremba P., Demchenko V., Kokhtych L., Iurzhenko M., Rybalchenko T., Оvsankina V., Dolgoshey V., Sytnyk I., Marynin A. Antimicrobial and Antiviral Activity of Nanocomposites Based on Polyelectrolyte Complexes with Silver Nanoparticles. Mikrobiolohichnyi Zhurnal, 2024, 86(2), 36–50. https://doi.org/10.15407/microbiolj86.02.036.
11. Demchenko V., Mamunya Y., Sytnyk I., Iurzhenko M., Rybalchenko N., Zahorodnia S. Musioł M. Wound Dressing Cryogel Materials Based on Poly (vinyl alcohol), Hyaluronic Acid, and Ag2O Nanoparticles. ACS Applied Materials & Interfaces. 2025, 17, 38: 53312–53326 https://doi.org/10.1021/acsami.5c14960.
12. Demchenko, V., Zaremba, P., Rybalchenko, N., Zahorodnia, S., Artiukh, L., Rybalchenko, T. Iurzhenko, M. Structural peculiarities of the silver-containing nanocomposites based on carboxymethyl cellulose-chitosan polyelectrolyte complexes and their antimicrobial and antiviral applications. Scientific Reports, 2025, 15(1), 35087. https://doi.org/10.1038/s41598-025-18932-9.
13. Liu Y., Yang M., Wang J., Yue H., Du Z., Cheng X., Du, X. Ag-CNC nanoparticles decorated thermoplastic starch/PLA/PBAT composite film with superior antibacterial property, enhanced barrier capacity and high UV-shielding effect. Industrial Crops and Products, 2025, 225, 120510.
14. Skorokhoda V.Y., Semenyuk N.B., Dudok G.D., Kysil H.V. Silver-containing osteoplastic nanocomposites based on polyvinylpyrrolidone copolymers. Voprosy Khimii i Khimicheskoi Tekhnologii. 2022, 3: 67–73. https://doi.org/10.32434/0321-4095-2022-142-3-67-73.
15. Ishchenko O. Medical purpose films based on polysaccharides. Technical Sciences and Technologies, 2020, 1: 257–263. https://doi.org/10.25140/2411-5363-2020-1(19)-257-263.
16. Ishchenko O. V., Bessarabov V. I., Plavan V. P., Baula O. P., Resnytskyi I. V., Cherkas S. S Investigation of the kinetics of releasing of decamethoxin antimicrobic drugs from medical application polymeric films Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series, 128(6), 86–94. https://doi.org/10.30857/1813-6796.2018.6.10.
17. Xiong J., Sheng C., Wang Q., Guo W. Toughened and water-resistant starch/TiO2 bio-nanocomposites as an environment-friendly food packaging material. Materials Research Express, 2019, 6, 5. https://doi.org/10.1088/2053-1591/ab058b.
18. Liu X., Liu Y., Fan M., Qian K., Ma W., Li D., Li, L. Development of antibacterial starch-based PLA/PBAT active packaging films for enhanced beef preservation. Food Chemistry, 2025, 145804. https://doi.org/10.1016/j.foodchem.2025.145804.
19. Song X., Zuo G., Chen F. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. International Journal of Biological Macromolecules, 2018, 107, Part A: 1302–1309. https://doi.org/10.1016/j.ijbiomac.2017.09.114.
20. Czaja-Jagielska N., Praiss A., Walenciak M., Zmyslona D., Sankowska N. Biodegradable packaging based on PLA with antimicrobial properties. Logforum, 2020, 16, 2: 279–286. https://doi.org/10.17270/J.LOG.2020.391
21. Tajari N., Sadrnia H., Hosseini F. Effect of thyme and neroli essential oils and zinc oxide nanoparticles on properties of PLA-based films. European Polymer Journal, 2025, 114153. https://doi.org/10.1016/j.eurpolymj.2025.114153.
22. Tian Y., Lei Q., Yang F., Xie J., & Chen C. Development of cinnamon essential oil-loaded PBAT/thermoplastic starch active packaging films with different release behavior and antimicrobial activity. International Journal of Biological Macromolecules, 2024, 263, 130048. https://doi.org/10.1016/j.ijbiomac.2024.130048.
23. Noori N., Khanjari A., Rezaeigolestani M., Karabagias I. K., Mokhtari S. Development of antibacterial biocomposites based on poly (lactic acid) with spice essential oil (Pimpinella anisum) for food applications. Polymers, 2021, 13(21), 3791.
https://doi.org/10.3390/polym13213791.
24. Ishchenko, O., Plavan, V., Resnytskyi, I., Liashok, I. Producing of nonwoven materials by electrospinning the biocompatible polymers with chitosan addition. Technology Audit and Production Reserves, 2018, 5/3(43): 4–7. https://doi.org/10.15587/2312-8372.2018.146471.
25. Ishchenko O., Plavan V., Lyashok I., Shevchuk T., Patrykhina Z. Technology for obtaining of ultrafine nonwoven materials based on polymer compositions with chitosan. Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series, 2020, 148 (4): 107–116 . https://doi.org/10.30857/1813-6796.2020.4.10.
26. Ishchenko O.V., Plavan V.P., Liashok I.O. Biocompatible nonwoven materials based on chitosan Herald of Khmelnytskyi National University, Issue 3, 2019 (273): 72–26
https://doi.org/10.31891/2307-5732-2019-273-3-72-76.
27. Rechun O., Tkachuk V. Use of biodegradable polymers and antimicrobial packaging materials in food packaging. Commodity Bulletin 2022, 15: 274–284. https://doi.org/10.36910/6775-2310-5283-2022-15-24.
28. Masyuk A. S., Kysil Kh. V., Skorokhoda V. Y., Katruk D. S., Kulish B. I., Levytskiy V. Ye. Features of obtaining and properties of binary blends of polylactides. Review. Chemistry, Technology and Application of Substances. 2020, 3, 2: 146–155. https://doi.org/10.23939/ctas2020.02.146.
29. Solodovnyk T.V., Kurilenko Y.M. Chitosan-based films: preparation, properties, modification and use. Issues of chemistry and chemical technology. 2012, 4: 65–82.
30. Patent UA 139864. Bioactive polyelectrolyte membrane based on calcium phosphates and polymers. Sukhodub L.B., Sukhodub L.F., Kumeda M.O. Publ. 27.01.2020, Bull. no. 2.
31. Sklyar A.M., Chichykalo D.V. Production of biologically active material based on chitosan and fucorcin. Prirodničì nauki – 2020,17: 120–124. DOI:10.5281/zenodo.4482954.
32. Babych I., Kalinkevich O.V., Pogorelov M.V. Sorption properties of chitosan membranes depending on the pH level. “Current issues of theoretical and clinical medicine” International Scientific and Practical Conference. 2013: 6–7.
33. Ishchenko O.V., Liashok I.O., Hubatenko V.I., Oseredchuk A.-M.I., Vardanian A.O., Resnytskiy I.V. Physical and chemical properties of chitosan based films and the technology of their products. Physical-organic chemistry, pharmacology and pharmaceutical technology of biologically active substances: collection of scientific papers of the KNUTD. 2019, 2, I: 262–270 https://er.knutd.edu.ua/handle/123456789/18000.
34. Pobigay G., Konovalova V., Gnatchuk N., Burban A. Development of chitosan hydrogels and study their biomedical application. Scientific notes of NAUKMA. 2011, 118: 17–21.
35. Dzumedzey Yu., Pobigay G., Konovalova V., Burban A. Production of biocompatible polymer films based on chitosan and investigation of their properties. Scientific Notes. 2010, 105: 51–56.
36. Cai, K., Wang, X., Yu, C., Zhang, J., Tu, S., & Feng, J. Enhancing the Mechanical Properties of PBAT/Thermoplastic Starch (TPS) Biodegradable Composite Films through a Dynamic Vulcanization Process. ACS Sustainable Chemistry Engineering. 2024, 12, 4: 1573–1583 https://doi.org/10.1021/acssuschemeng.3c06847.
37. Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. Antimicrobial Actions and Applications of Chitosan. Polymers. 2021, 13, 904. https://doi.org/10.3390/polym 13060904.
38. Chandrasekaran, M., Kim, K. D., & Chun, S. C. Antibacterial Activity of Chitosan Nanoparticles: A Review. Processes 2020, 8, 1173. doi:10.3390/pr8091173.
39. Kodsangma A., Homsaard N., Nadon S., Rachtanapun P., Leksawasdi N., Phimolsiripol Y., Jantanasakulwong K. Effect of sodium benzoate and chlorhexidine gluconate on a bio-thermoplastic elastomer made from thermoplastic starch-chitosan blended with epoxidized natural rubber. Carbohydrate Polymers. 2020, 242:116421. https://doi.org/10.1016/j.carbpol.2020.116421.
40. Estrada-Monje A., Alonso-Romero S., Zitzumbo-Guzmán R., Estrada-Moreno I. A., Zaragoza-Contreras E. A. Thermoplastic Starch-Based Blends with Improved Thermal and Thermomechanical Properties. Polymers. 2021, 13, 4263. https://doi.org/10.3390/polym13234263.
41. Patent 87513 UA. IPC A61K33/38 A61K9/70 Method for manufacturing application silver-containing composites based on fibrous carbon sorbents. Nikolaiev V.H., Sahno L. O., Riabushko V. I., Yerokhin V.Y Publ. 10.02.2014. Bul. no.3.
42. Wedmore I., McManus I.G., Pusater A.E., Holcomb I.B. The chitosan – based hemostatic dressing: Experience in current combat operations. I. Trauma, 2006, 133, 2: 185–192.
43. Zhang, Z., Weng, B., Hu, Z., Si, Z., Li, L., Yang, Z., & Cheng, Y. Chitosan iodine complexes: Preparation, characterization, and antibacterial activity. International Journal of Biological Macromolecules, 2024, 260, 129598. https://doi.org/10.1016/j.ijbiomac.2024.129598.
44. Zhang, L., Zhang, Z., Li, C., Hu, Z., Liang, Y., Yang, Z., Huang, D. (2022). Preparation and characterization of amphiphilic chitosan/iodine composite film as antimicrobial material. International Journal of Biological Macromolecules, 222, 2426–2438. https://doi.org/10.1016/j.ijbiomac.2022.10.028.
45. Кulyk T.V., Podust T.V., Palyanytsya B.B. Supramolecular complexes iodine-chitosan in solution and on the surface of silica. Polimernyi Zhurnal. 2017, 39, 4: 241–247. https://doi.org/10.15407/polymerj.39.04.241.