2025 (4) 6
https://doi.org/10.15407/polymerj.47.04.222
STUDYING THE INFLUENCE OF AEROSIL FILLING METHOD ON THE THERMAL PROPERTIES OF NANOSTRUCTURED POLYMER SYSTEMS
VALERIY DAVYDENKO (ORCID: 0000-0003-0771-2679)
Institute of Macromolecular Chemistry of the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine
Abstract
The thermal stability of polyurethane filled with aerosil suspension is higher than that of polyurethane filled with dry aerosil. The thermal decomposition of polyurethane follows the Arenius equation and occurs via an autocatalysis mechanism. The reaction mechanism remains unchanged regardless of the composition obtained and is consistent for all compositions with a small filler amount. Increasing the suspension aerosil concentration (solid content> 20%) alters the reaction mechanism and reduces the composite’s thermal stability.
Keywords: aerosil, thermal properties, nanostructured systems.
REFERENCES
1. Ishchenko S.S., Pridatko A.B., Novikova T.I., Lebedev E.V. Soluble silicates in reaction with isocyanates. Vysokomol. Soed., 1995, 37A, 7: 1125–1129.
2. Ishchenko S.S., Lebedev E.V. Chemical, atmospheric and radiation resistance of organomineral polymer composites. Ukrainian Chemistry Journal, 2001, 67, 8: 116–119.
3. Davydenko V.V., Nesterov A.A., Lebedev E.V. Mechanical properties of composition containing structurizing filler. Reports of the National Academy of Sciences of Ukraine, 2005, 11: 129-133.
4. Davydenko V.V., Nesterov A.A., Lebedev E.V. Relaxation behavior of composition containing structurizing filler. Polimernyi Zhurnal, 2005, 27, 3: 139–142.
5. Davydenko V.V., Kuksin A.N., Lebedev E.V. Formation kinetics and viscoelastic properties of the polyurethane–inorganic structuring filler system. Reports of the National Academy of Sciences of Ukraine, 2003, 9: 144-149.
6. Lipatov Yu.S. Physical chemistry of filled polymers. – Kyiv: Naukova dumka, 1967. 234 p.
7. Lipatova T.E. Catalytic oligomer polymerization and polymer network formation. – Kyiv: Naukova dumka, 1974. 208 p.
8. Doyle C.D. Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal. Chem., 1961, 33, 1: 77-79. https://doi.org/10.1021/ac60169a022
9. Menczel J.D., Prime R.B. Thermal analysis of polymers. Fundamentals and Applications. – New Jersey: Wiley & Sons, Inc., 2008. 688 p.
10. Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009, 34: 1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002
11. Gamlin C.D., Dutta N.K., Choudhury N.R., Kehoe D., Matisons J. Evaluation of kinetic parameters of thermal and oxidative decomposition of base oils by conventional, isothermal and modulated TGA, and pressure DSC. Thermochimica Acta, 2002, 392: 357–369. https://doi.org/10.1016/S0040-6031(02)00121-1.
12. Chiang C.L., Chang R.C., Chiu Y.C. Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochimica Acta, 2007, 453: 97–104. https://doi.org/10.1016/j.tca.2006.11.013.
13. Kumar H., Kumar A.A., Siddaramaiah Physico-mechanical, thermal and morphological behavior of polyurethane/poly(methyl methacrylate) semi-interpenetrating polymer networks. Polymer Degradation and Stability, 2006, 91: 1097–1104. https://doi.org/10.1016/j.polymdegradstab.2005.07.003.
14. Yao F., Wu Q., Lei Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 2009, 93: 90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012.
15. Lipatov Yu. S.., Kercha Yu. Yu., Sergeeva L. M. Structure and properties of polyurethanes. – Kyiv: Naukova dumka, 1970. 279 p.
16. Davydenko V. V. Polyurethane – calcium sulfate system hardening kinetics peculiarity. Polimernyi Zhurnal, 2009, 31, 3: 131–136.
