2025 (2) 1
https://doi.org/10.15407/polymerj.47.02.049
BIODEGRADABLE POLYMERS
PART 2. POLYLACTIC AND POLYGLYCOLIC ACIDS – SYNTHESIS, PROPERTIES, MODIFICATION, AND APPLICATIONS
VALENTYNA BOIKO* (ORCID: 0000-0002-5527-0468), SERGII RIABOV** (ORCID: 0000-0003-2996-3794), LARYSA KOBRINA*** (ORCID: 0000-0001-6801-0801), IVAN KOKHAN**** (ORCID: 0000-0002-6597-5357)
Institute of Macromolecular Chemistry, the NAS of Ukraine, 48 Kharkivske Highway, Kyiv 02155, Ukraine
*e-mail: valboyko54@gmail.com
**e-mail: sergii.riabov@gmail.com
***e-mail: kobrina.larisa@gmail.com
****e-mail: ivan.v.kokhan@gmail.com
Polimernyi Zhurnal, 2025, 47, no. 2: 49–58
Section: Review.
Language: Ukrainian.
Abstract:
Recently, the production of biodegradable polymer materials based on naturally renewable raw materials has become widespread in polymer technology. This reduces carbon emissions because biological raw materials absorb CO2 from the air. It also reduces the accumulation of polymer waste in the environment because biodegradable polymers decompose faster than traditional fossil fuel-based plastics. This review analyzes literary sources from the past two decades regarding the production and use of biodegradable polymers, such as polylactic acid (PLA) and polyglycolic acid (PGA). These polymers are synthesized from the natural monomers lactic acid (LA) and glycolic acid (GA), which are obtained through the fermentation of starch or sugar. The paper describes the synthesis and characteristics of LA and GA monomers. Methods of LA polymerization are also considered. The paper shows that the physical, thermal, and mechanical properties of PLA depend on its molecular weight, molecular weight distribution, and the ratio of its optical isomers. The paper also presents the properties of PLA obtained from different isomers, as well as the physicochemical characteristics of PLA compared to synthetic polymers, such as polypropylene, polyethylene terephthalate, and polyamide. The paper also considers examples of copolymerization of the PLA monomer with GA, ε-caprolactone, dimethylsiloxane, and ethylene glycol using various catalysts. Additionally, the paper discusses methods of PLA modification, such as adding nanoparticles of zinc, copper, silver, titanium dioxide, silicon dioxide, and so on, or by plasticizing it with various chemical compounds. These methods improve the rheological, thermal, mechanical, antibacterial, and other properties of polymer materials based on PLA. The review also describes the synthesis of PGA and its properties. Specifically, it compares the gas and water vapor permeability of PGA with similar characteristics of polylactic acid (PLA) and other synthetic polymers, including polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, and polyamide. The review also describes the applications of PLA and PGA and the mechanisms by which these polymers decompose in nature. The review covers 56 scientific and technical publications in total. The analysis concludes that synthesizing biopolymers from natural monomers, such as lactic and glycolic acids, is economically and ecologically sound.
Keywords: biodegradable polymers, biodegradable polymer materials, lactic acid, polylactic acid, glycolic acid, polyglycolic acid.
REFERENCES
1. Boiko V., Riabov S., Kobrina L., Dmitrieva T., Sinelnikov S. Biodegradable polymers. Part 1: polymers from naturally renewable raw materials Polimernyi Zhurnal, 2024, 4: 243–258. https://doi.org/10.15407/polymerj.46.04.243.
2. Jem K. J., Tan. B. The development and challenges of poly (lactic acid) and poly(glycolicacid). Advanced Industrial and Engineering Polymer Research, 2020, 3, 2: 60–70. https://doi.org/10.1016/j.aiepr.2020.01.002.
3. Li G., Zhao M., Xu, F., Yang B., Li X., Meng X., Teng L., Sun F.,Li, Y. Synthesis and biological application of polylactic acid. Molecules, 2020, 25, 21: 5023. https://doi.org/10.3390/molecules25215023.
4. Jamshidian M., Tehrany E.A., Imran M., Jacquot M., Desobry S. Poly-lactic acid: production, applications, nanocomposites, andreleasestudies.Compr. Rev. Food Sci. Food Saf. 2010, 9, 5: 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x.
5. Khouri N. G., Bahú J. O., Blanco-Llamero C., Severino P., Concha V. O., Souto E. B. PolylacticAcid (PLA): Properties, Synthesis, and Biomedical Applications. Journal of Molecular Structure, 2024. 138243. https://doi.org/10.1016/j.molstruc.2024.138243.
6. Cunha B. L., Bahú J. O., Xavier L. F., Crivellin S., deSouza S. D., Lodi L., JardiniA.L., Filho R.M., SchiavonM. I. R. B., Souto E. B. Lactide: production routes, properties, and applications. Bioengineering, 2022, 9, 4: 164. https://doi.org/10.3390/bioengineering9040164.
7. Macedo J. V. C., de Barros Ranke F. F., Escaramboni B., Campioni T. S., Núñez E. G. F., de Oliva Neto P. Cost-effective lactic acid production by fermentation of agro-industrial residues. 2020. Biocatalysis and Agricultural Biotechnology, 27: 101706. https://doi.org/10.1016/j.bcab.2020.101706.
8. Feng L., Bian X., Li G., Chen X. The thermal properties and structural evolution of poly (l-lactide)/poly (d-lactide) blends. Macromolecules, 2021, 54, 21: 10163–10176. https://doi.org/10.1021/acs.macromol.1c01866.
9. Luo F., Fortenberry A., Ren J., Qiang Z. Recent progress in enhancing poly (lactic acid) stereocomplex formation for material property improvement. Frontiers in Chemistry, 2020, 8: 688 .https://doi.org/10.3389/fchem.2020.00688 .
10. Pang X., Zhuang X., Tang Z., Chen X. Polylacticacid (PLA): research, development and industrialization. Biotechnol. J., 2010, 5, Nо11: 1125–1136. https://doi.org/10.1002/biot.201000135.
11. Jiménez L., Mena M. J., Prendiz J., Salas L., Vega-Baudrit J.Polylacticacid (PLA) as a bioplastic and its possible application sinthe food industry. J Food Sci. Nutr. 2019. 5, No 2: 2–6. https://doi.org/10.24966/FSN-1076/100048.
12. Giammona G., Craparo E. F. Biomedical applications of polylactide (PLA) and its copolymers. Molecules, 2018, 23, 4: 980. https://doi.org/10.3390/molecules23040980.
13. Walczak J., Chrzanowski M., Krucińska I. Research on a nonwoven fabric made from multi-block biodegradable copolymer based on L-lactide, glycolide, and trimethylene carbonate with shape memory. Molecules, 2017, 22, 8: 1325. https://doi.org/10.3390/molecules22081325.
14. Chen Y., Zhang J., Zhang Y., CaoW., Liu X., Bao J., Zhang X.,Chen, W Poly (L‐lactide)‐b‐poly(ε‐caprolactone)‐b‐poly(D, L‐lactide) copolymers with enhanced toughness and strength by regulating crystallization and phase separation. Journal of Polymer Science, 2023. 61, 19: 2303–2315. https://doi.org/10.1002/pol.20230425.
15. Zou W., HuangJ., Su J., ZengW., Liang Y., Chen R., Zhang H., MinY., Guo, Z. Review on modification of poly (lactic acid) in physical and mechanical properties. ES Food & Agroforestry, 2021, 6: 3–11. https://dx.doi.org/10.30919/esfaf562.
16. Li W., Zhang C., Chi H., Li L.,Lan T., Han P., Chen H., Qin Y. Development of Antimicrobial Packaging Film Made from Poly (Lactic Acid) Incorporating Titanium Dioxide and Silver Nanoparticles. Molecules, 2017, 22:1170. https://doi.org/10.3390/molecules22071170.
17. Mulla M. Z., Rahman M. R. T., Marcos B., TiwariB., Pathania S. Poly Lactic Acid (PLA) Nanocomposites: Effect of inorganic nanoparticles reinforcement on its performance and food packaging applications. Molecules, 2021, 26, 7: 1967. https://doi.org/10.3390/molecules26071967.
18. Sanusi O. M., Benelfellah A., Bikiaris D. N., AïtHocineN. Effect of rigid nanoparticles and preparation techniques on the performances of poly (lactic acid) nanocomposites: A review. Polymers for Advanced Technologies, 2021, 32, 2: 444–460. https://doi.org/10.1002/pat.5104
19. Ranakoti L., Gangil B., Mishra S. K., Singh T., Sharma S., Ilyas R. A., El-Khatib S. Critical review on polylacticacid: properties, structure, processing, biocomposites, andnanocomposites. Materials, 2022, 15, 12: 4312. https://doi.org/10.3390/ma15124312
20. Carbonell-Verdu A., Garcia-Garcia D., Dominici F., Torre L., Sanchez-Nacher L., Balart R. PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 2017, 91: 248–259. https://doi.org/10.1016/j.eurpolymj.2017.04.013.
21. Hassouna F., Raquez J. M., Addiego F., Dubois P., Toniazzo V., Ruch D. New approach on the development of plasticized polylactide (PLA): Grafting of poly (ethylene glycol) (PEG) via reactive extrusion. European Polymer Journal, 2011, 47, 11: 2134–2144. https://doi.org/10.1016/j.eurpolymj.2011.08.001.
22. Burgos N., Martino V. P., Jiménez A. Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 2013, 98, 2: 651–658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009
23. Maiza M., Benaniba M. T., Quintard G., Massardier-Nageotte V. Biobase dadditive plasticizing Polylacticacid (PLA). Polimeros, 2015, 25, 6: 581–590. https://doi.org/10.1590/0104-1428.1986.
24. Singh A. A., Sharma S., Srivastava M., Majumdar A. Modulating the properties of polylactic acid for packaging applications using biobased plasticizers and naturally obtained fillers. International Journal of Biological Macromolecules, 2020, 153: 1165–1175. https://doi.org/10.1016/j.ijbiomac.2019.10.246Get rightsandcontent.
25. Zhao X., Liu J., Li J., Liang X., Zhou W., Peng S. Strategies and techniques for improving heat resistance and mechanical performances of poly (lactic acid) (PLA) biodegradable materials. International Journal of Biological Macromolecules, 2022, 218: 115–134. https://doi.org/10.1016/j.ijbiomac.2022.07.091.
26. Hasanoglu Z., Sivri N., Alanalp M. B., Durmus A. Preparation of polylactic acid (PLA) films plasticized with a renewable and natural Liquidambar Orientalis oil, International Journal of Biological Macromolecules, 2024, 257, 1: 128631. https://doi.org/10.1016/j.ijbiomac.2023.128631.
27. Greco A., Ferrari F., Maffezzoli A. Mechanical properties of poly (lactid acid) plasticized by cardanol derivatives, Polymer Degradation and Stability, 2019, 159: 199–204. https://doi.org/10.1016/j.polymdegradstab.2018.11.028.
28. Maiza, M., Benaniba, M. & Massardier-Nageotte, V. Plasticizing effects of citrate esters on properties of poly (lactic acid). Journal of Polymer Engineering, 2016, 36(4): 371–380. https://doi.org/10.1515/polyeng-2015-0140.
29. Wang, Y.B., Ren, L., Gan, H.N. et al. Simultaneously improving toughness and strength for biodegradable Poly (lactic acid) modified by rice husk and acetyl tributyl citrate. J. Polym. Res., 2024, 31, 285. https://doi.org/10.1007/s10965-024-04127-9.
30. Dao Hai Yen, Hoang Thi Phuong, Nguyen Van Chien, Doan Ha Phuong, Ta Thuy Nguyen. Study on plasticizing PLA using natural plasticizers available in Vietnam as a matrix resin for biodegradable PLA/cellulose composites. Vietnam Journal of Chemistry. 2024, 62, S1: 61–67. https://doi.org/10.1002/vjch.202300292.
31. Lim L. T., Auras R., Rubino M. Processing technologies for poly (lactic acid). Progress in Polymer Science, 2008. 33, 8: 820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004.
32. Ljungberg N., Andersson T., Wesslen B. Film extrusion and film weldability of poly (lactic acid) plasticized with triacetin and tributyl citrate. J. Appl. Polym. Sci., 2003, 88, 14: 3239-3247. https://doi.org/10.1002/app.12106.
33. Singhvi M. S., Zinjarde S. S., Gokhale D. V. Polylactic acid: synthesis and biomedical applications. Journal of applied microbiology, 2019, 127, 6: 1612–1626. https://doi.org/10.1111/jam.14290.
34. Jiménez L., Mena M. J., Prendiz J., Salas L., Vega-Baudrit J. Polylactic acid (PLA) as a bioplastic and its possible applications in the food industry. J Food Sci Nutr, 2019, 5, 2: 2–6. https://doi.org/10.24966/FSN-1076/100048.
35. Taib N. A. A. B., Rahman M. R., Huda D., Kuok K. K., Hamdan S., Bakri M. K. B., Julaihi M.R.M.B., Khan A. A review on polylacticacid (PLA) as a biodegradable polymer. Polymer Bulletin, 2023, 80: 1179–1213. https://doi.org/10.1007/s00289-022-04160-y.
36. Ahmad A., Banat F., Alsafar H., Hasan, S. W. An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conversion and Biorefinery, 2022: 1–20. https://doi.org/10.1007/s13399-022-02581-3.
37. Vatanpour V., Dehqan A., Paziresh S., Zinadini S., Zinatizadeh A. A., Koyuncu I. Polylactic acid in the fabrication of separation membranes: A review. Separation and Purification Technology, 2022. 296: 121433. https://doi.org/10.1016/j.seppur.2022.121433.
38. Gao C., Chen P., Ma Y., SunL., Yan Y., Ding Y., Sun L. Multifunctional polylactic acid biocomposite film for active food packaging with UV resistance, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 2023, 253:126494. https://doi.org/10.1016/j.ijbiomac.2023.126494.
39. Subramani R., Mustafa M. A., Ghadir G. K., Al-Tmimi H. M., Alani Z. K., Rusho M. A., Kumar A. P. Exploring the use of biodegradable polymer materials in sustainable 3D printing. Applied Chemical Engineering, 2024, 3870. https://doi.org/10.59429/ace.v7i2.3870.
40. Zaaba N. F., Jaafar M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 2020, 60, 9: 2061–2075. https://doi.org/10.1002/pen.25511.
41. Aryan V., Maga D., Majgaonkar P., Hanich R. Valorisation of polylactic acid (PLA) waste: A comparative lifecycle assessment of various solvent-based chemical recycling technologies. Resources, conservation and recycling, 2021,172:105670.https://doi.org/10.1016/j.resconrec.2021.105670.
42. Pérez-Fonseca A. A., González-López M. E., Robledo-Ortíz J. R. Reprocessing and recycling of poly(lactic acid): a review. Journal of Polymers and the Environment, 2023, 31, 10: 4143–4159. https://doi.org/10.1007/s10924-023-02919.
43. Gadda T. M., Pirttimaa M. M., Koivistoinen O., Richard P., Penttila M., Harlin A. The industrial potential of bio-based glycolic acid and polyglycolic acid. Appita: Technology, Innovation, Manufacturing, Environment, 2014, 67, 1. https://doi.org/10.3316/INFORMIT.134763464745168.
44. Ayyoob M., Lee D.H., Kim J.H., Nam S.W., Kim Y.J. Synthesis of poly(glycolic acids) via solution polycondensation and investigation of their thermal degradation behaviors. Fibers Polym. 2017, 18, 3: 407–415.https://doi.org/10.1007/s12221-017-6889-1.
45. Budak K., Sogut O., Aydemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. 2020, 27: 208. https://doi.org/10.1007/s10965-020-02187-1.
46. Samantaray P. K., Little A., Haddleton D. M., McNally T., TanB., Sun Z., Huang W.,Yang J.,Wan C.Poly (glycolicacid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chemistry, 2020, 22, 13: 4055–4081.https://doi.org/10.1039/D0GC01394C.
47. Zurita R., Puiggalí J., Franco L., Rodríguez-Galán A. Copolymerization of glycolide and trimethylenecarbonate. J. Polym. Sci., Part A: Polym. Chem., 2006, 44 , 2: 993–1013, https://doi.org/10.1002/pola.21199.
48. Olewnik E., Czerwiński W. Synthesis, structural study and hydrolyticdegradation of copolymer based on glycolic acid and bis-2-hydroxyethyl terephthalate. Polym. Degrad. Stab. 2009, 94, 2: 221– 226,https://doi.org/10.1016/j.polymdegradstab.2008.10.026.
49. Little A., Ma S., Haddleton D. M., Tan B., Sun Z., Wan C. Synthesis and Characterization of High Glycolic Acid Content Poly (glycolic acid-co-butyleneadipate-co-butyleneterephthalate) and Poly (glycolic acid-co-butylenesuccinate) Copolymers with Improved Elasticity. ACS omega, 2023, 8, 41: 38658–38667. https://doi.org/10.1021/acsomega.3c05932.
50. Razak N. S., Mohamed R. Antimicrobial sustainable biopolymers for biomedical plastics applications – an overview. Polimery. 2021, 66, 11–12: 574–583. https://doi.org/10.14314/polimery.2021.11.2/.
51. Pourentezari M., Dortaj H., Hashemibeni B., Yadegari M., Shahedi A. An overview of the application of poly (lactic-co-glycolic) acid (PLGA)-based scaffold for drug delivery in cartilage tissue engineering. International Journal of Medical Laboratory, 2021, 8, 2: 78–95.https://doi.org/10.18502/ijml.v8i2.6270.
52. Shiva S., Asuwin Prabu R. G.,Bajaj G., John A. E., Chandran S., Kumar V. V., Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. Journal of Materials Science: Materials in Medicine, 2023, 34: 62 . https://doi.org/10.1007/s10856-023-06765-9.
53. Low Y. J., Andriyana A., Ang B. C., Zainal Abidin N. I. Bioresorbable and degradable behaviors of PGA: Current state and future prospects. Polymer Engineering & Science. 2020, 60, 11:2657–2675.https://doi.org/10.1002/pen.25508.
54. Shekhar N., Mondal A. Synthesis, properties, environmental degradation, processing, and applications of Polylactic Acid (PLA): an overview. Polym. Bull. 2024, 81: 11421–11457.https://doi.org/10.1007/s00289-024-05252-7.
55. Chen S., Meng X., Xin Z., Gong W., Li C., Wen W. Preparation of Nonlinear Structure Poly (glycolic acid) with High Toughness, Excellent Hydrolysis Stability, and Foaming Performance. Industrial & Engineering Chemistry Research. 2024, 63, 20: 9058–9069. https://doi.org/10.1021/acs.iecr.4c00610.
56. Greco A., Ferrari F. Thermal behavior of PLA plasticized by commercial and cardanol-derived plasticizers and the effect on the mechanical properties. Journal of Thermal Analysis and Calorimetry, 2021, 146(1): 131–141. https://doi.org/10.1007/s10973-020-10403-9.