2025 (3) 3
https://doi.org/10.15407/polymerj.47.03.118
NANOCOMPOSITES BASED ON A MULTICOMPONENT POLYMER MATRIX CONTAINING THE NANOFILLER 1,2-PROPANEDIOLISOBUTYL-POSS: THERMODYNAMICS OF INTERACTIONS AND DYNAMIC-MECHANICAL PROPERTIES
LIUDMYLA KARABANOVA (ORCID: 0000-0002-5909-0042), NATALIA BABKINA (ORCID: 0000-0002-1803-0887), LIUBOV HONCHAROVA (ORCID: 0000-0003-2529-9945)
Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine,
48 Kharkivske Highway, Kyiv, 02155, Ukraine
Polimernyi Zhurnal, 2025, 47, no. 3: 118-133
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The nanocomposites based on a multicomponent polymer matrix, consisting of polyurethane and polyhydroxypropyl methacrylate and representing semi-interpenetrating polymer networks (semi-IPNs), containing 1,2-propanediolisobutyl-POSS, were synthesized. The thermodynamic parameters of interactions within the system and the dynamic mechanical properties of the resulting nanocomposites were examined. Based on experimental data on the sorption of methylene chloride vapor by semi-IPNs and nanocomposite samples, the free energy of mixing polyurethane and polyhydroxypropyl methacrylate (Gibbs energy) was calculated. It was shown that the free energy of mixing during the formation of the semi-IPNs is positive, indicating that polyurethane and polyhydroxypropyl methacrylate are thermodynamically incompatible. The addition of nanofiller 1,2-propanediolisobutyl-POSS to the system increases the thermodynamic incompatibility between polyurethane and polyhydroxypropyl methacrylate. The study of the nanocomposites using dynamic mechanical analysis showed that the nanocomposites have one peak of the loss tangent (tan δ), which occurs between the peaks for the original polymer components. A maximum of tan d is the result of forced phase compatibility, or the formation of small-sized phase domains of polyurethane and polyhydroxypropyl methacrylate, and the presence of a large proportion of interfacial layers in the systems, which does not allow fixing the individual glass transition temperatures of these components within the synthesized semi-IPNs. The addition of the nanofiller 1,2-propanediolisobutyl-POSS into the matrix causes a shift of the maximum of the tan δ curve toward higher temperatures and a decrease in its amplitude. This indicates the suppression of segmental motion in polyurethane due to the concentration of part of the nanofiller in the flexible segments of polyurethane and, as a result, the restriction of segmental dynamics motion. For the nanocomposites based on a matrix with a PU/PHPMA ratio of 70/30, containing 3% and 5% of 1,2-propanediolisobutyl-POSS, a broad tan δ maximum was observed, covering the temperature range from 0 to 100 °C with relatively high intensity. This broad, high-intensity tan δ maximum indicates that the nanocomposites have the potential to be used as effective noise and vibration damping materials.
Keywords: nanocomposites, polyurethane, polyhydroxypropyl methacrylate, 1,2-propanediolisobutyl-POSS, thermodynamics, dynamic mechanical analysis
REFERENCES
1. Çakmakçi E. POSS–Thermosetting polymer nanocomposites. In book: Polyhedral oligomeric silsesquioxane (POSS) polymer nanocomposites: from synthesis to applications. Thomas S., Somasekharan L. (Eds.), Elsevier, 2021: 127-175. ISBN: 9780128213476. https://doi.org/10.1016/B978-0-12-821347-6.00004-4
2. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polimernyi Zhurnal, 2009, 31, 2: 137-143.
3. Zhou H., Chua M.H., Xu J. Functionalized POSS-based hybrid composites. In book: Polymer composites with functionalized nanoparticles: synthesis, properties, and applications. Pielichowski K., Majka T.M. (Eds.), Elsevier, 2019: 179-210. ISBN: 978-0-12-814064-2. https://doi.org/10.1016/B978-0-12-814064-2.00006-8
4. Yahyaei H., Mohseni M. Composites and nanocomposites of PU polymers filled with POSS fillers. In book: Polyurethane Polymers: Composites and Nanocomposites. Thomas S., Datta J., Haponiuk J.T., Reghunadhan A. (Eds.), Elsevier, 2017: 221-252. ISBN: 0128041021. https://doi.org/10.1016/B978-0-12-804065-2.00007-3
5. Kuo S.W., Chang F.C. POSS related polymer nanocomposites. Progress in Polymer Science, 2011, 36, 12: 1649-1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002
6. Gomza Y.P., Fomenko A.A., Nesin S.D., Gumenna M.A., Klymenko N.S., Shevchenko V.V., Klepko V.V. Structure Formation Features of Organic–Inorganic Nanocomposites Based on Silsesquioxanecontaining Polyetherimideurethane. Nanosystems, Nanomaterials, Nanotechnologies, 2008, 6, 3: 965-976. https://www.imp.kiev.ua/nanosys/en/articles/2008/3/nano_vol6_iss3_p0965p0976_2008_abstract.html
7. Kausar A. State-of-the-art overview on polymer/POSS nanocomposite. Polymer-Plastics Technology and Engineering, 2017, 56, 13: 1401-1420. https://doi.org/10.1080/03602559.2016.1276592
8. He W., Song P., Yu B., Fang Z., Wang H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 2020, 114, 100687. https://doi.org/10.1016/j.pmatsci.2020.100687
9. Hebda E., Ozimek J., Raftopoulos K.N., Michałowski S., Pielichowski J., Jancia M., Pielichowski K. Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polymers for Advanced Technologies, 2015, 26, 8: 932-940. https://doi.org/10.1002/pat.3504
10. Fu B.X., Hsiao B.S., White H., Rafailovich M., Mather P.T., Jeon H.G., Phillips S., Lichtenhan J., Schwab J. Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polymer International, 2000, 49, 5: 437-440. https://doi.org/10.1002/(sici)1097-0126(200005)49:5<437::aid-pi239>3.0.co;2-1
11. Oaten M., Choudhury N. R. Silsesquioxane−urethane hybrid for thin film applications. Macromolecules. 2005, 38, 15: 6392-6401. http://dx.doi.org/10.1021/ma0476543
12. Zhang W., Camino G., Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Progress in Polymer Science, 2017, 67: 77-125. http://dx.doi.org/10.1016/j.progpolymsci.2016.09.011
13. Kazemi F., Mir Mohamad Sadeghi G., Kazemi H.R. Synthesis and evaluation of the effect of structural parameters on recovery rate of shape memory polyurethane-POSS nanocomposites. European Polymer Journal, 2019, 114: 446-451. https://doi.org//10.1016//j.eurpolymj.2018.12.041
14. Joshi M., Adak B., Butola B.S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Progress in Materials Science, 2018, 97: 230-282. https://doi.org/10.1016/ j.pmatsci.2018.05.001
15. Birtane H., Esmer K., Madakbas S., Kahraman M.V., Structural and dielectric properties of POSS reinforced polyimide nanocomposites, Journal of Macromolecular Science, Part A, Pure and Applied Chemistry, 2019, 56, 3: 245-252. https://doi.org/10.1080/10601325.2019.1565546
16. Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009, 34, 10: 1068-1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002
17. Madbouly S.A., Otaigbe J.U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Progress in Polymer Science, 2009, 34, 12: 1283-1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002
18. Marzec M., Kucińska-Lipka J., Kalaszczyńska I., Janik H. Development of polyurethanes for bone repair. Materials Science and Engineering: C., 2017, 80: 736-747. https://doi.org/10.1016/j.msec.2017.07.047
19. Lloyd A.W., Faragher R.G., Denyer S.P. Ocular biomaterials and implants. Biomaterials, 2001, 22, 8: 769-785. https://doi.org/10.1016/S0142-9612(00)00237-4
20. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V., Helias M., Philips G.J., Rose S.F., Mikhalovska L., Boiteux G., Sergeeva L.M., Lutsyk E.D., Svyatyna A. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. Journal of Materials Science: Materials in Medicine, 2006, 17, 12: 1283-1296. https://doi.org/10.1007/s10856-006-0603-y
21. Bershtein V.A., Gun`ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Advances, 2013, 3, 34: 14560-14570. https://doi.org/10.1039/c3ra40295a
22. Blanko I. Decomposition and ageing of hybrid materials with POSS. In book: Polymer/POSS nanocomposites and hybrid materials: preparation, properties, applications. Kalia S., Pielichowski K. (Eds.), Switzerland: Springer, 2018: 415-462. https://doi.org/10.1007/978-3-030-02327-0_13
23. Hebda E., Pielichowski K. Polyurethane/POSS hybrid materials. In book: Polymer/POSS nanocomposites and hybrid materials: preparation, properties, applications. Kalia S., Pielichowski K. (Eds.), Switzerland: Springer, 2018: 167-204. https://doi.org/10.1007/978-3-030-02327-0_5
24. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. Journal of Polymer Science: Part B: Polymer Physics, 2008, 46: 1696-1712. https://doi.org/10.1002/polb.21506
25. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid and Polymer Science, 2013, 291: 573-583. https://doi.org/10.1007/s00396-012-2745-4
26. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Composites Science and Technology, 2012, 72: 865-872. https://doi.org/10.1016/j.compscitech.2012.02.008
27. Madhavan K., Reddy B.S.R. Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. Journal of Membrane Science, 2009, 342, 1-2: 291-299. https://doi.org/10.1016/j.memsci.2009.07.002
28. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. Reactive and Functional Polymers, 2012, 72, 4: 227–232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001
29. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polymer Degradation and Stability, 2014, 104: 50-56. http://dx.doi.org/10.1016/j.polymdegradstab.2014.03.025
30. Wei K., Wang L., Zheng S. Organic–inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polymer Chemistry, 2013, 4, 5: 1491–1501. https://doi.org/10.1039/c2py20930f
31. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polymer Degradation and Stability, 2009, 94, 8: 1230-1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016
32. Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. Journal of Materials Science, 2015, 51, 5: 2443-2452. https://doi.org/10.1007/s10853-015-9557-0
33. Karabanova L.V., Honcharova L.A., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chemistry, Physics and Technology of Surface, 2016, 7, 4: 413-420. https://doi.org/10.15407/hftp07.04.413
34. Karabanova L.V., Honcharova L.A., Babkina N.V., Sapsay V.I., Klymchuk D.O. POSS-containing nanocomposites based on polyurethane/poly(hydroxypropyl methacrylate) polymer matrix: dynamic mechanical properties and morphology. Polymer Testing, 2018, 69: 556–562. https://doi.org/10.1016/j.polymertesting.2018.06.012
35. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50, 24: 5749-5757. https://doi.org/10.1016/j.polymer.2009.05.037
36. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Materials Chemistry and Physics, 2009, 117, 1: 91-98. https://doi.org/10.1016/j.matchemphys.2009.05.006
37. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P.T. Thermally modulated nanostructure of poly(ε–caprolactone)–POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54, 13: 3350-3362. https://doi.org/10.1016/j.polymer.2013.04.015
38. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V. 3-D artificial nanodiamonds containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) polymer matrix. In book: Nanoplasmonics, nano-optics, nanocomposites, and surface studies. Fesenko O., Yatsenko L. (Eds.), Switzerland: Springer Proceedings in Physics, 2015, 167: 149-164. ISBN 978-3-319-18542-2. https://doi.org/10.1007/978-3-319-18543-9
39. Karabanova L.V., Sergeeva L.M., Boiteux G. Filler effect on formation and properties of reinforced interpenetrating polymer networks. Composite Interfaces, 2001, 8, 3-4: 207-219. https://doi. org/10.1163/15685540152594677
40. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.P., Nosach L.V. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application. In book: Nanophysics, nanophotonics, surface studies and application. Springer Proceedings in Physics, 2016, 183: 451-475. https://doi.org/10.1007/978-3-319-30737-4_38
41. Karabanova L.V., Bershtein V.A., Gomza Yu.P., Kirilenko D.A., Nesin S.D., Yakushev P.N. Nanostructure, dynamics, and mechanical properties of nanocomposites based on polyurethane-poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer network with ultra-low MWCNT contents. Polymer Composites, 2016, 39, 1: 263-273. https://doi.org/10.1002/pc.23926
42. Kausar A. POSS-based IPN nanocomposites. Chapter 10. In book: Polyhedral oligomeric silsesquioxane (POSS) polymer nanocomposites: from synthesis to applications. Thomas S., Somasekharan L. (Eds.), Elsevier, 2021: 127-175. ISBN 0128213477. https://doi.org/10.1016/B978-0-12-821347-6.00014-7
43. Bershtein V.A., Pissis P., Sukhanova Т.Е., Каrabanova L.V., Yakushev P.N., Bondaruk О.М., Klonos P., Spyratou E., Vylegzhanina М.E., Voronin E.F. Biocompatible nanocomposites based on semi-interpenetrating polymer networks and nanosilica modified by bioactive amino acid tryptophan: morphology, dynamics and properties. European Polimernyi Zhurnal, 2017, 92: 150-164. https://doi.org/10.1016/j.eurpolymj.2017.04.038
44. Klonos P., Chatzidogiannaki V., Roumpos K., Spyratou E., Georgiopoulos P., Kontou E., Pissis P., Gomza Yu., Nesin S., Bondaruk O., Karabanova L. Structure–properties investigations in hydrophilic nanocomposites based on polyurethane/poly(2–hydroxyethyl methacrylate) semi–IPNs and nanofiller densil for biomedical application. Journal of Applied Polymer Science, 2016, 133, 11: 2635-2650. https://doi.org/10.1002/app.43122
45. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polymer International, 2004, 53, 12: 2051-2058. https://doi.org/10.1002/pi.1627
46. Tager A.A. Termodinamicheskaya ustoychivost’ sistem polimer-rastvoritel’ i polimer-polimer. Vysokomolekulyarnyye soyedineniya, ceriya A, 1972, 14, 12: 2690-2706.
47. Tager A.A. Phiziko-chimiya polimerov. M.: Khimiya, 1978: 544. ISBN 978-545-828-195-9.
48. Lipatov Yu.S., Sergeeva L.M. Vzaimopronikayushchiye polimernyye setki. Kiev: Nauk. dumka, 1979: 160.
49. Karabanova L.V., Honcharova L.A., Babkina N.V., Klymchuk D.O. Thermodynamics, morphology and dynamic-mechanical properties of polyurethane and nanocomposites based on it, containing hydroxy-POSS. Polimernyi Zhurnal, 2023, 45, 3: 181-194. https://doi.org/10.15407/polymerj.45.03.232
50. Fizikokhimiya mnogokomponentnykh polimernykh sistem: vol. II. Chapter 7. Pod red. Yu.S. Lipatova. Kiev: Nauk. dumka, 1986: 384.
51. Karabanova L.V., Honcharova L.A., Shtompel V.I. Nanocomposites based on polyurethane matrix and 1,2-propanediolisobutyl-POSS: structure and morphological peculiarities. Polimernyi Zhurnal, 2020, 42, 2: 85-95. https://doi.org/10.15407/polymerj.42.02.085
52. Polymer Blends. Vols 1 and 2 / Paul D.R., Newman S. (Eds.). Academic Press, New York, 1978: 501. ISBN 0125468016.
53. He X., Qu M., Shi X. Damping Properties of Ethylene-Vinyl Acetate Rubber/Polylactic Acid Blends. Journal of Materials Science and Chemical Engineering, 2016, 4, 3: 15-22. https://doi.org/10.4236/msce.2016.43003
54. Chang S., Cunbin Z., Lihuan X., Cheng Z. Effects of chemical structure of phenolic resin on damping properties of acrylate rubber-based blends. Journal of Macromolecular Science, 2015, 54, 2: 177-189. https://doi.org/10.1080/00222348.2014.996463
55. Shi X.Y., Bi W.N., Zhao S.G. DMA analysis of the damping of ethylene–vinyl acetate/acrylonitrile butadiene rubber blends. Journal of Applied Polymer Science, 2012, 124, 3: 2234-2239. https://doi.org/10.1002/app.35301
