2025 (3) 6
https://doi.org/10.15407/polymerj.47.03.160
THERMOPLASTIC POLYMER COMPOSITES WITH PYRORESISTIVE PROPERTIES AND THEIR APPLICATIONS FOR PLASTIC WELDING
YEVGEN MAMUNYA1* (ORCID: 0000-0003-3855-2786), OLEKSII MARUZHENKO2** (ORCID: 0000-0002-3561-5916) ANDRII PIDLISNYI2 (ORCID: 0009-0009-5156-4221) SERGII SUPRUN2 (ORCID: 0009-0005-7969-7975), ANDRII PYLYPENKO1,3 (ORCID: 0000-0003-0538-1386), IRYNA PARASHCHENKO1 (ORCID: 0000-0002-9797-6530), ANDRII MISIURA2 (ORCID: 0000-0001-9918-1670), MAKSYM IURZHENKO1,2 (ORCID: 0000-0002-5535-731X), MYKOLA KORAB2 (ORCID: 0000-0001-8030-1468)
1Institute of Macromolecular Chemistry of NAS of Ukraine,
48, Kharkivske Highway, 02155, Kyiv, Ukraine
2E.O. Paton Electric Welding Institute,
11, Kazymyr Malevych St., 03150, Kyiv, Ukraine
3Donetsk Institute for Physics and Engineering named after O.O. Galkin of the NAS of Ukraine 46, Nauki Ave., 03028, Kyiv, Ukraine
*E-mail: ymamunya@ukr.net
**E-mail: a.v.maruzhenko@gmail.com
Polimernyi Zhurnal, 2025, 47, no. 3: 160-171
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Pyroresistive composites based on high-density polyethylene (HDPE) and polyvinyl chloride (PVC) were studied, which contained two types of filler, carbon black (C) or chopped carbon fibers (CC) in an amount of 8 vol.%. It was shown that when an electric voltage is applied to a composite sample, Joule heat is released, which heats the composite to an equilibrium temperature Te. The dependence of the equilibrium temperature on the voltage U is described by the quadratic equation Te = T0 + a×U2, and on the electric power P supplied to the sample by the linear equation Te = T0 + b·P, where T0 is the initial temperature, a, b are the coefficients. However, when the voltage is increased above certain values, a deviation from the quadratic law is observed, and the achievable temperature Te is significantly lower than that calculated by the equation. The reason for the deviations is the manifestation of the PTC effect (positive temperature coefficient of resistance), as a result of which an increase in temperature due to an increase in voltage causes thermal expansion of the polymer matrix, which leads to the destruction of the conductive chains of the filler and an increase in the resistance of the sample. A comparison of the curves for composites based on HDPE and PVC demonstrates a significantly higher level of influence of the PTC effect for composites based on PE, and also a higher influence for composites containing carbon fibers compared to carbon black. A comparative calculation of the amount of energy Q required to heat a composite sample to Te and the amount of Joule thermal energy E released in the sample when electrical power is supplied to it showed that the energy Q is 20% of the Joule thermal energy E released in the sample, i.e. the main part of the Joule thermal energy (80%) is dissipated to the environment. The value of the E/Q ratio depends on the intensity of exchange with the environment, as well as on the geometry of the sample. The possibilities of contact welding of plastics using a heating element (HE) made of pyroresistive material are shown. This method demonstrated the maximum adhesive strength of the welded joint, which is comparable to the strength of the welded polymers, both for HDPE and PVC, and is promising for use in various industries.
Keywords: thermoplastic polymers; carbon fillers; polymer composites; pyroresistive effect; welding.
REFERENCES
1. Liu Y., Zhang H., Porwal H., Busfield J. J. C., Peijs T., Bilotti E. Pyroresistivity in conductive polymer composites: A perspective on recent advances and new applications. Polymer International, 2019, 68, 3: 299–305. https://doi.org/10.1002/pi.5735.
2. Lu L., Guo H., Wang Y., Liu K., Martin-Fabiani I., Peijs T., Bilotti E., Zhang H., Liu Y. Dual enhancement of Joule heating and positive temperature coefficient behaviour in biodegradable nanocomposites via hybrid carbon nanofiller networks. Composites Part A: Applied Science and Manufacturing, 2025, 199: 109167. https://doi.org/10.1016/j.compositesa.2025.109167.
3. Kim H., Lee S. Characterization of Electrical Heating of Graphene/PLA Honeycomb Structure Composite Manufactured by CFDM 3D Printer. Fashion and Textiles, 2020, 7: 8. https://doi.org/10.1186/s40691-020-0204-2.
4. Wu X., Yin T., Liu W., Wan L., Liao Y. The Advances in Polymer-Based Electrothermal Composites: A Review. Polymers, 2025, 17, 15: 2047. https://doi.org/10.3390/polym17152047.
5. Liu Y., Zhang H., Porwal H., Tu W., Evans J., Newton M., Busfield J. J. C., Peijs T., Bilotti E. Universal Control on Pyroresistive Behavior of Flexible Self-Regulating Heating Devices. Advanced Functional Materials, 2017, 27, 39: 1702253. https://doi.org/10.1002/adfm.201702253.
6. Cheng Y., Zhang H., Wang R., Wang X., Zhai H., Wang T., Jin Q., Sun J. Highly Stretchable and Conductive Copper Nanowire-Based Fibers with Hierarchical Structure for Wearable Heaters. ACS Applied Materials & Interfaces, 2016, 8: 32925–32933. https://doi.org/10.1021/acsami.6b09293.
7. Vertuccio L., De Santis F., Pantani R., Lafdi K. K., Guadagno L. Effective De-Icing Skin Using Graphene-Based Flexible Heater. Composites Part B: Engineering, 2019, 162: 600–610. https://doi.org/10.1016/j.compositesb.2019.01.045.
8. Luo J., Lu H., Zhang Q., Yao Y., Chen M., Li Q. Flexible Carbon Nanotube/Polyurethane Electrothermal Films. Carbon, 2016, 110: 343–349. https://doi.org/10.1016/j.carbon.2016.09.016.
9. Noel H., Glouannec P., Ploteau J., Chauvelon P., Feller J. F. Design and Study of an Electrical Liquid Heater Using Conductive Polymer Composite Tubes. Applied Thermal Engineering, 2013, 54: 507–515. https://doi.org/10.1016/j.applthermaleng.2013.02.022.
10. Lee T., Lee S., Jeong Y. G. Carbon Nanotube/Cellulose Papers with High Performance in Electric Heating and Electromagnetic Interference Shielding. Composites Science and Technology, 2016, 131: 77–87. https://doi.org/10.1016/j.compscitech.2016.06.003.
11. Hu H., Zhao J., Jiang D., Jin Y., Xiong Z., Li S., Li C. Preparation and PTC properties of multilayer graphene/CB/HDPE conductive composites with different cross-linking systems. Materials Science in Semiconductor Processing, 2024, 173: 108124. https://doi.org/10.1016/j.mssp.2024.108124.
12. Park J., Jeong Y. G. Investigation of Microstructure and Electric Heating Behavior of Hybrid Polymer Composite Films Based on Thermally Stable Polybenzimidazole and Multiwalled Carbon Nanotube. Polymer, 2015, 59: 102–109. https://doi.org/10.1016/j.polymer.2015.01.003.
13. Liu Y., Zhang H., Porwal H., Tu W., Wan K., Evans J., Newton M., Busfield J. J. C., Peijs T., Bilotti E. Tailored Pyroresistive Performance and Flexibility by Introducing a Secondary Thermoplastic Elastomeric Phase into Graphene Nanoplatelet (GNP)-Filled Polymer Composites for Self-Regulating Heating Devices. Journal of Materials Chemistry C, 2018, 6: 2760–2768. https://doi.org/10.1039/C7TC05621D.
14. Zhan Y., Meng Y., Li Y. Electric heating behavior of flexible graphene/natural rubber conductor with self-healing conductive network. Materials Letters, 2017, 192: 115–118. https://doi.org/10.1016/j.matlet.2016.12.045.
15. Jung J.-M., Hong J.-H., Hwang I.-T. Facile construction of electrically-conductive carbon patterns from a cheap coal-type pitch and their application to electric heating devices. Journal of Industrial and Engineering Chemistry, 2016, 39: 188–194. https://doi.org/10.1016/j.jiec.2016.05.023.
16. Jeong Y. G., An J.-E. Effects of mixed carbon filler composition on electric heating behavior of thermally-cured epoxy-based composite films. Composites Part A: Applied Science and Manufacturing, 2014, 56: 1–8. https://doi.org/10.1016/j.compositesa.2013.09.003.
17. El-Tantawy F., Kamada K., Ohnabe H. A novel way of enhancing the electrical and thermal stability of conductive epoxy resin–carbon black composites via the Joule heating effect for heating-element applications. Journal of Applied Polymer Science, 2003, 87, 2: 97–109. https://doi.org/10.1002/app.10851.
18. Wang F. X., Liang W. Y., Wang Z. Q., Yang B., He L., Zhang K. Preparation and property investigation of multi-walled carbon nanotube (MWCNT)/epoxy composite films as high-performance electric heating (resistive heating) element. Express Polymer Letters, 2018, 12, 4: 285–295. https://doi.org/10.3144/expresspolymlett.2018.26.
19. Yan J., Jeong Y. G. Synergistic Effect of Hybrid Carbon Fillers on Electric Heating Behavior of Flexible Polydimethylsiloxane-Based Composite Films. Composites Science and Technology, 2015, 106: 134–140. https://doi.org/10.1016/j.compscitech.2014.11.016.
20. Da Y., Wang Y., Dong H., Shang Q., Zhang Y., Wang H., Du Q., Gao J. Development of Carbon Nanotubes–Graphene–Polydimethylsiloxane Composite Film with Excellent Electrothermal Performance. Energies, 2024, 17, 1: 46. https://doi.org/10.3390/en17010046.
21. Brassard D., Dubé M., Tavares J.R. Resistance welding of thermoplastic composites with a nanocomposite heating element. Composites Part B: Engineering, 2019, 165: 779−784. https://doi.org/10.1016/j.compositesb.2019.02.038.
22. Russello M., Catalanotti G., Hawkins S. C., Falzon B. G. Welding of Thermoplastics by Means of Carbon-Nanotube Web. Composites Communications, 2020, 17: 56–60. https://doi.org/10.1016/j.coco.2019.11.001.
23. Le H.H., Kolesov I., Ali Z., Uthardt M., Osazuwa O., Ilisch S., Radusch H.-J. Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. Journal of Materials Science, 2010, 45: 5851–5859. https://doi.org/10.1007/s10853-010-4661-7.
24. Isaji S., Bin Y., Matsuo M. Electrical Conductivity and Self-Temperature-Control Heating Properties of Carbon Nanotubes Filled Polyethylene Films. Polymer, 2009, 50, 4: 1046–1053. https://doi.org/10.1016/j.polymer.2008.12.033.
25. Mamunya Y. P., Muzychenko Y. V., Lebedev E. V., Boiteux G., Seytre G., Boullanger C., Pissis P. PTC Effect and Structure of Polymer Composites Based on Polyethylene/Polyoxymethylene Blend Filled with Dispersed Iron. Polymer Engineering and Science, 2007, 47, 1: 34–42. https://doi.org/10.1002/pen.20658.
26. Luo Y., Wang G., Zhang B., Zhang Z. The Influence of Crystalline and Aggregate Structure on PTC Characteristic of Conductive Polyethylene/Carbon Black Composite. European Polymer Journal, 1998, 34, 8: 1221–1227. https://doi.org/10.1016/S0014-3057(98)00099-8.
27. Choi B.-K., Park S.-J., Seo M.-K. Effect of Processing Parameters on the Thermal and Electrical Properties of Electroless Nickel-Phosphorus Plated Carbon Fiber Heating Elements. Carbon Research, 2020, 6, 1: 6. https://doi.org/10.3390/c6010006.
28. Berzina A., Klemenoks I., Tupureina V., Knite M. Ethylene-Octene Copolymer and Carbon Black Composite Electro-Thermal Properties for Self-Regulating Heating. IOP Conference Series: Materials Science and Engineering, 2019, 500: 012012. https://doi.org/10.1088/1757-899X/500/1/012012.
29. Chu K., Lee S.-C., Lee S., Kim D., Moon C., Park S.-H. Smart Conducting Polymer Composites Having Zero Temperature Coefficient of Resistance. Nanoscale, 2015, 7, 2: 471–478. https://doi.org/10.1039/C4NR04489D.
30. Kolisnyk R., Korab M., Iurzhenko M., Masiuchok O., Mamunya Y. Development of Heating Elements Based on Conductive Polymer Composites for Electrofusion Welding of Plastics. Journal of Applied Polymer Science, 2021, 138, 20: 50418. https://doi.org/10.1002/app.50418.
31. Hou M., Yang M., Beehag A., Mai Y.-W., Ye L. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element. Composite Structures, 1999, 47, 1-4: 667–672. https://doi.org/10.1016/S0263-8223(00)00047-7.
32. Brassard D., Dubé M., Tavares J.R. Modelling resistance welding of thermoplastic composites with a nanocomposite heating element. Journal of Composite Materials, 2021, 55, 5: 625–639. https://doi.org/10.1177/0021998320957055.
33. Russello M., Catalanotti G., Hawkins S. C., Falzon B. G. Welding of thermoplastics by means of carbon-nanotube web. Composites Communications, 2020, 17: 56–60. https://doi.org/10.1016/j.coco.2019.11.001.
34. Pang H., Xu L., Yan D. X., Li Z. M. Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, 39, 11: 1908–1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007.
35. Mamunya Y. P. Carbon nanotubes as conductive filler in segregated polymer composites – electrical properties. In: Yellampalli S., editor. Carbon Nanotubes–Polymer Nanocomposites. InTech; 2011. https://www.intechopen.com/chapters/16995.
36. Mamunya Y. P., Maruzhenko O., Kolisnyk R., Iurzhenko M., Pylypenko A., Masiuchok O., Godzierz M., Krivtsun I., Trzebicka B., Pruvost S. Pyroresistive properties of composites based on HDPE and carbon fillers. Polymers, 2023, 15, 9: 2105. https://doi.org/10.3390/polym15092105.
37. Zribi K., Feller J. F., Elleuch K., Bourmaud A., Elleuch B. Conductive polymer composites obtained from recycled polycarbonate and rubber blends for heating and sensing applications. Polymers for Advanced Technologies, 2006, 17, 9-10: 727–731. https://doi.org/10.1002/pat.776
38. Sangroniz L., Landa M., Fernández M., Santamaría A. Matching rheology, conductivity, and Joule effect in PU/CNT nanocomposites. Polymers, 2021, 13, 6: 950. https://doi.org/10.3390/polym13060950.
39. Luo J., Lu H., Zhang Q., Yao Y., Chen M., Li Q. Flexible carbon nanotube/polyurethane electrothermal films. Carbon, 2016, 110: 343–349. https://doi.org/10.1016/j.carbon.2016.09.016.
40. Chu K., Park S. Electrical heating behavior of flexible carbon nanotube composites with different aspect ratios. Journal of Industrial and Engineering Chemistry, 2016, 35: 195–198. https://doi.org/10.1016/j.jiec.2015.12.033
41. Mamunya Y., Maruzhenko O., Pidlisnyi A., Pylypenko A., Paraschenko I., Korab M., Iurzhenko M. Heating Elements Based on PVC and Carbon Fillers. ACS Applied Electronic Materials, 2024, 6, 5: 3385–3394. https://doi.org/10.1021/acsaelm.4c00204.
42. Dang Z.-M., Li W.-K., Xu H.-P. Origin of remarkable positive temperature coefficient effect in the modified carbon black and carbon fiber cofilled polymer composites. Journal of Applied Physics, 2009, 106: 024913. https://doi.org/10.1063/1.3182818.
43. Shen L., Wang F. Q., Yang H., Meng Q. R. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polymer Testing, 2011, 30, 4: 442–448. https://doi.org/10.1016/j.polymertesting.2011.03.007.
44. An J.-E., Jeong Y. G. Structure and electric heating performance of graphene/epoxy composite films. European Polymer Journal, 2013, 49, 6: 1322–1330. https://doi.org/10.1016/j.eurpolymj.2013.02.005.
45. Xu F., Aouraghe M. A., Xie X., Zheng L., Zhang K., Fu K. K. Highly stretchable, fast thermal response carbon nanotube composite heater. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106471. https://doi.org/10.1016/j.compositesa.2021.106471.
46. Stavrov D., Bersee H. E. N. Resistance welding of thermoplastic composites—an overview. Composites: Part A—Applied Science and Manufacturing, 2005, 36, 5: 603–614. https://doi.org/10.1016/j.compositesa.2004.08.003.
47. Korab M. G., Yurzhenko M. V., Demchenko V. L., Mamunya Ye. P. Modern models of formation of polymer welded joints materials (Review). The Paton Welding Journal, 2023, 1: 47–55. https://doi.org/10.37434/tpwj2023.01.06.
48. Dube M., Hubert P., Yousefpour A., Denault J. Resistance welding of thermoplastic composites skin/stringer joints. Composites: Part A—Applied Science and Manufacturing, 2007, 38: 2541–2552. https://doi.org/10.1016/j.compositesa.2007.04.005.
49. de Souza S. D. B., Abrahão A. B. R. M., Costa M. L., Marlet J. M. F., Hein L. R. O., Botelho E. C. Experimental Investigation of Processing Welding Parameters for PPS/Carbon Fiber Laminates for Aeronautical Applications. Advanced Materials Research, 2016, 1135: 62–74. https://doi.org/10.4028/www.scientific.net/AMR.1135.62.
