2025 (4) 3

https://doi.org/10.15407/polymerj.47.04.200

ASSESSMENT OF THERMODEGRADATION OF IONOMER POLYURETHANES AFTER ACCELERATED DEGRADATION USING PYROLYTIC MASS SPECTROMETRY

OLEXANDRA BRYKOVA (ORCID: 0000-0002-5112-2329), OLENA AKHRANOVYCH (ORCID: 0000-0003-1652-9323), VOLODYMYR BORTNYTSKYI (ORCID: 0000-0003-4954-6533), YURI SAVELIEV (ORCID: 0000-0003-3356-9087)

Institute of Macromolecular Chemistry of the NAS of Ukraine

48 Kharkivske Highway, Kyiv, 02155, Ukraine

e-mail: elena_akh@ukr.net

Abstract

The thermal degradation of film materials obtained from waterborne polyurethane dispersions (WPUD) based on: castor oil (WPUD -1), xanthan (WPUD -2), castor oil and xanthan (WPUD -3) initial samples and after their exposure in a climate chamber (WPUD -1 * , 2 * , 3 * ), where the processes of natural degradation under the influence of UV radiation, moisture and elevated temperature are simulated, were investigated using the pyrolytic mass spectrometry (PMS) method. According to the results of exposure of polymers in a climate chamber, it was established that insignificant processes of deterioration, the initial stage of degradation, occur in the case of a sample synthesized using exclusively petrochemical raw materials (WPUD -m), and fragmentation (degradation) in the case of samples of film materials WPUD -1 * , 2 * , 3 * . The results of studies of accelerated aging of polymer samples indicate the influence of the nature of the polymer macro chain components on this process. Namely, components of natural origin accelerate this process, while the effect of the simultaneous content of vegetable oil and exopolysaccharide has signs of synergy of the process. The results of PMS show that for WPUD -1, 1*, parallel pyrolytic processes are characteristic: dissociation into isocyanate and alcohol and cleavage into primary amine, CO 2 and alkene, which leads to the rearrangement of the isocyanate fragment (m/z 56) into the amino group fragment (m/z 30) with the release of carbon dioxide (m/z 44) and the presence of fragments of the ” alkyl ” series. During the pyrolysis of WPUD -2 and WPUD -3, both before and after exposure in the climate chamber, the process of decarboxylation (m/z 44) and dehydration (m/z 18) dominates. This is due to the presence of xanthan in the polymer structure, which is caused by the degradation of the side groups of the xanthan chain (decomposition of mannose, glucuronic and pyruvic acid units), as well as dimethylolpropionic acid as a component of the ionomer polyurethane chain. And in general, for all the studied samples after accelerated degradation, a significant decrease in the intensity of the release of volatile pyrolysis products, an increase in the number of formed ionic fragments, and for samples based on Xa and castor oil + Xa, decrease in molecular weight and maximum m/z, which indicates a change in the mechanism of thermal destruction.

Keywords: anionic aqueous dispersion, pyrolysis mass spectrometry, castor oil, xanthan.

REFERENCES

1. Hai T. A. P., Tessman M., Neelakantan N., Samoylov А., Ito Yu., Rajput B., Pourahmady N., Burkart M. D. Renewable polyurethanes from sustainable biological precursors. Biomacromolecules, 2021, 22, 5: 1770–1794. https://doi.org/10.1021/acs.biomac.0c01610.
2. Zhou X, Zhang X, Mengyuan P, He X, Zhang C. Bio-based polyurethane aqueous dispersions. Physical Sciences Reviews, 2023, 8(9): 1967–2000. https://doi.org/10.1515/psr-2020-0075.
3. Gaddam S.K., Arukula R. Renewable soft segment-induced anionic waterborne polyurethane dispersions with enriched bio-content. J. Polym. Res, 2022, 29:59. https://doi.org/10.1007/s10965-022-02922-w.
4. Ha Zh., Lei L., Zhou M., Xia Y., Chen X., Mao P., Fan B., Shi Sh. Bio-based waterborne polyurethane coatings with high transparency, antismudge and anticorrosive properties. ACS Applied Materials & Interfaces, 2023, 15, 5: 7427–7441. https://doi.org/10.1021/acsami.2c21525.
5. Zhou M., Ha Zh., Lei L., Xia Y., Mao P., Chen X., Fan B., Shi Sh. Castor oil-based transparent and omniphobic polyurethane coatings with high hardness, anti-smudge and anti-corrosive properties. Progress in Organic Coatings, 2022, 172: 107120. https://doi.org/10.1016/j.porgcoat.2022.107120
6. Santamaria-Echart A., Fernandes I., Barreiro F., Corcuera M. A., Eceiza A. Advances in waterborne polyurethane and polyurethane-urea dispersions and their eco-friendly derivatives: a review. Polymers, 2021, 13(3): 409. https://doi.org/10.3390/polym13030409.
7. Zhu Y., Deng H., Luo H., An Y., Yu X., Luo Y., Quirino R. L., Zhang Ch. Synthesis of anti-ultraviolet and fluorescent waterborne polyurethanes with highly active plant oil-based internal emulsifiers. Journal of Cleaner Production, 2025, 508: 145578. https://doi.org/10.1016/j.jclepro.2025.145578.
8. Pandya H., Mahanwar P. Fundamental Insight into Anionic Aqueous Polyurethane Dispersions. Advanced Industrial and Engineering Polymer Research. 2020, 3, 3: 102–110. https://doi.org/10.1016/j.aiepr.2020.07.003.
9. Zhang C., Garrison T.F., Madbouly S.A. Kessler M. R. Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci., 2017, 71: 91–143. http://doi.org/10.1016/j.progpolymsci.2016.12.009.
10. Paraskar P. M., Prabhudesai M. S., Hatkar V. M., Kulkarni R. D. Vegetable oil based polyurethane coatings – a sustainable approach: a review. Prog. Org. Coat., 2021, 156: 106267–106299. https://doi.org/10.1016/ j.porgcoat.2021.106267.
11. Yin L., Zhang B., Tian M. Ning N., Wang W. Synthesis and applications of bio-based waterborne polyurethane, a review. Prog. In Organic Coat, 2024, 186: 108095–108128. https://doi.org/10.1016/j.porgcoat.2023.108095.
12. Tennebroek R., van der Hoeven-van Casteren I., Swaans R., van der Slot S., Stals P.J., Tuijtelaars B., Koning C. Water-based polyurethane dispersions. Polym. Int., 2019, 68: 832–842. https://doi.org/10.1002/pi.5627.
13. Crescentini T. M., May J. C., McLean J. A., Hercules D. M. Mass spectrometry of polyurethanes, Polymer, 2019, 181: 121624. https://doi.org/10.1016/j.polymer.2019.121624.
14. Pagacz J., Hebda E., Janowski B., Sternik D., Jancia M., Pielichowski K. Thermal decomposition studies on polyurethane elastomers reinforced with polyhedral silsesquioxanes by evolved gas analysis. Polymer Degradation and Stability, 2018, 149: 129–142. https://doi.org/10.1016/j.polymdegradstab.2018.01.028.
15. Lu M. G., Lee J. Y., Shim M. J., Kim S. W. Thermal degradation of film cast from aqueous polyurethane dispersions. Journal of Applied Polymer Science. 2002, 85(12): 2552–2558. https://doi.org/10.1002/app.10882.
16. Travinskaya Т.V., Brykova А.N., Savelyev Yu.V. Degradable ionic polyurethanes based on vegetable oil and polysaccharide: preparation and properties. Dopov. Nac. Akad. Nauk Ukr. 2016, 12: 82–89. https://doi.org/10.15407/dopovidi2016.12.082.
17. Travinskaya Т.V., Brykova А.N., Bortnitsky V.I., Babkina N.V., Shtompel V.I. (Bio)degradable ionomeric polyurethanes based on xanthan: synthesis, properties, and structure. Intern. J of Polym. Sci., 2017, 1: 8632072. https://doi.org/10.1155/2017/8632072.
18. Boiko, V. V., Riabov, S. V., Kobrina, L. V., Dmytriieva, T. V., Bortnytskyi, V. I. Using the method of pyrolytic mass spectrometry in the study of biodegradable polymeric materials. Polimernyi Zhurnal, 2021, 43 (1): 41-53. https://doi.org/10.15407/polymerj.43.01.041.
19. Boiko V.V., Riabov S.V., Kobrina L.V., Dmitrieva T.V. Review of evaluation methods for biodegradability of polymeric materials. Polimernyi Zhurnal, 2022, 44 (1): 24–40. https://doi.org/10.15407/polymerj.44.01.024.
20. Gao Q., Li W., Luo H., Fan H., Xiang J., Yan J., Li C., Chen Z. Photodegradation behavior and blocking strategy of waterborne polyurethane under UV and Xenon irradiation. Materials Today Communications, 2023, 34: 105212. https://doi.org/10.1016/j.mtcomm.2022.105212.
21. Wang H., Liu Y., Sun B., Huang Sh., Tian J. Aging Behavior of the Polyether Polyurethane Films Irradiated by UV. Advanced Materials Research, 2013, 748: 16–21.
https://doi.org/10.4028/www.scientific.net/AMR.748.16.
22. Ischenko O.V., Gaidai S.V., Beda O.A. Mass spectrometry. Kyiv: VPC Kyiv University, 2018: 244.
23. Hiltz J.A. Analytical pyrolysis gas chromatography/mass spectrometry (py-GC/MS) of poly(ether urethane)s, poly(ether urea)s and poly(ether urethane-urea)s. J. Anal. Appl. Pyrol., 2015, 113: 248–258 http://doi.org/10.1016/j.jaap.2015.01.013.
24. Zhang Y., Xia Zh., Huang H., Chen H. A degradation study of waterborne polyurethane based on TDI. Polym. Test., 2009, 28: 264–269. https://doi.org/10.1016/j.polymertesting.2008.12.011.
25. Moreira K. C., Dalmaschio C. J., Soares E. J., Nascimento A. Thermal degradation and rheological behavior of xanthan gum: kinetics, mechanism and aging effects. ChemistrySelect, 2025, 10: e00855–00865. https://doi.org/10.1002/slct.202500855.