2019 (2) 3

Fractal percolation modeling of structural organization of filled polyvinylchloride

 

Т.М. Shevchuk 1, М.А. Borduk 1, V.V. Krivtsov 1, V.A. Mashchenko2

 

1 Rivne State Humanitarian University

31, Plastova str., Rivne, 33028, Ukraine

2 Odessa State Academy of Technical Regulation and Quality

15, Kovalska str., Odessa, 65020, Ukraine

 

Polym. J., 2019, 41, no. 2: 109-115

 

Section: Physics of polymers.

 

Language: Ukrainian.

 

Abstract:

 

The use of fractal percolation and synergetic approaches to the filled polymer systems enable to analyze processes of their structure formation. Aim of the paper is to define fractal percolation structural parameters of PVC systems filled with chemical wastes based on the results of ultrasonic study using filled polymer model as well as amorphous state cluster model. Multi-tone, burdensome waste products of extraction of phosphoric acid – dispersed phosphogypsum and its modifications with heavy metal salts have been used as PVC fillers.

As experimental samples 5 mm thick and 25 mm in diameter plates have been used. They have been obtained with the help of hot pressing in T-p mode at temperature 403 K and pressure 10 MPa just after PVC and mineral fillers have been all mixed. To define structural properties of composite polymer materials and their visco elastic properties ultrasonic methods have been used operating machine where longitudinal and transverse ultrasonic waves go through the polymer sample immersed in fluid.

It has been shown that phosphogypsum modified surface fractions are active centers of interface layer formations on boundary polymer – filler. Comparing maximums of filled with phosphogypsum and its modified forms percolation clusters and PVC systems coordinate numbers enabled to correlate these dimensions. In the cluster model framework and according to fractal dimensions of filled systems the processes of structure formation on boundary polymer – filler have been analyzed. Their percolation dimensions that help to predict mode of behavior of such PVC systems in fields of force as well as in thermal fields have been defined. Models of application have been demonstrated as to the referenced modeling in specifying operating features of polymer composite materials.

 

Keywords: filled polyvinylchloride, fractal dimension, critical index of percolation, acoustic velocity, Poisson’s constant.

 

References

  1. Pesetskiy S.S., Myshkin N.K. Polimernyye kompozity mnogofunktsionalnogo naznacheniya: perspektivy razrabotok i primeneniya v Belarusi. Polimernyye materialy i tekhnologii, 2016, 2, no. 4: 6–29.
  2. Fambri L., Dabrowska I., Ceccato R., Pegoretti A. Effects of fumed silica and graw ratio on nanocomposite polypropylene fibers. Polymers, 2017, 9, no. 2: 9020041(1) – 9020041 (29).
  3. Otero–Navas I., Arjmand M., Sundararaj U. Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties. Polymer, 2017, 114: 122–134. https://doi.org/10.1016/j.polymer.2017.02.082
  4. Wang H., Xie G., Yang C., Zheng Y., Ying Z., Ren W. Enhanced toughness of multilayer grapheme-filled poly(vinylchloride) composites prepared using melt-mixing method. Polymer composites, 2017, 38, no. 1: 138–146. https://doi.org/10.1002/pc.23569
  5. Krivtsov V.V., Kolupaev B.S., Lebedev E.V. Zastosuvannya metodu termichno stimulovanoyi depolyarizatsiyi dlya vivchennya strukturi polimernih kompozitiv. Ukrayinskiy fIzichniy zhurnal, 2006, 51, no. 6: 830–835.
  6. Kolupaev B.S., Bordjuk N.A., Voloshin O.M., Lipatov Yu.S. The frequency spectrum of the structure elements of filled poly (vinylchloride). J. Polym. Mater, 1995, no. 12: 143– 149.
  7. Volynskiy A.A., Bakeyev N.F. Novyy podkhod k sozdaniyu nanokompozitov s polimernoy matritsey. Vysokomolekulyarnyye soyedineniya. Ser. C, 2011, 53, no. 7: 1203–1216.
  8. Bordyuk N.A., Voloshin O.M., Bestyuk Yu.N., Lipatov Yu.S., Kolupayev B.S. Teplofizicheskiye svoystva PVC, napolnennogo fosfogipsom i ego modifitsirovannymi formami. Plasticheskiye massy, 1990, no. 8: 86–88.
  9. Bordyuk N.A., Voloshin O.M., Demianyuk B.P., Kolupayev B.S. Teplofizicheskiye svoystva modifitsirovannogo polivinilkhlorida. Vysokomolekulyarnyye soyedineniya. Ser. A, 1990, 32, no. 6: 1232–1237.
  10. Jayavani S., Deka H., Varghese T.O., Nayak S.K. Recent development and future trends in coir fiber-reinforced green polymer сomposites: review and evalution. Polymer composites, 2016, 37, no. 11: 3296–3309.
  11. Blavatska V., Fricke N., Janke W. Polymers in disordered environments. Condensed matter physics, 2014, 17, no. 3: 33604(1) – 33604(11).
  12. Blavatska V., von Ferber C., Holovatch Yu. Star copolymers in porous environments: Scaling and its manifestations. Physical Review E, 2011, 83(1): 011803(1)–011803(9).
  13. Janssen H.-K., Stenull O. Scaling exponents for a monkey on a tree: Fractal dimensions of randomly branched polymers. Physical Review E, 2012, 85(5): 051126(1)–051126(15).
  14. Bordyuk N.A., Voloshin O.M., Kolupayev B.S., Lipatov Yu.S. Modifitsirovannyy neorganicheskiy sinteticheskiy fosfogips kak napolnitel polivinilkhlorida. III Minskiy mezhdunarodnyy forum «Teplomassobmen». VI. Teplomassoobmen v reologicheskikh sistemakh. Minsk, 1996: 229–233.
  15. Bordyuk N.A., Kolupayev B.S., Voloshin O.M. Vliyaniye davleniya pressovaniya na vyazkouprugiye i strukturno-mekhanicheskiye svoystva napovnenogo polivinilkhlorida. Fizika i tekhnika vysokikh davleniy, 1995, no. 3: 49–58.
  16. Bordyuk N.A., Kolupayev B.S., Levchuk V.V., Lipatov Yu.S. Opredeleniye strukturnykh parametrov polimernykh kompozitsiy po rezultatam ultrazvukovykh issledovaniy. Fizika tverdogo tela, 1996, 38, no. 7: 2270–2276.
  17. Bordyuk N.A., Gusakovskiy S.M., Ivanishchuk S.N., Kolupayev B.S. Issledovaniye akusticheskikh svoystv smesey polimerov. Akusticheskiy zhurnal, 1998, 44, 1: 21–24.
  18. Bordyuk N.A., Ivanishchuk S.N., Kolupayev B.S., Lipatov Yu.S. Akusticheskiye svoystva troynykh sistem: polivinilkhlorid-polivinilbutiral-dibutilftalat. Vysokomolekulyarnyye soyedineniya, 1997, 39 (A), no. 12: 1966–1971.
  19. Maschenko V.A., Panchuk O.O., Sadovenko I.O., Bordyuk M.A. Eksperimentalna ustanovka dlya vimiryuvannya pruzhnih parametriv girskih porid. Visnik Inzhenernoyi akademiyi Ukrayini, 2012, no. 3–4: 60–64.
  20. Kozlov G.V., Belousov V.N., Lipatov Yu.S. Fluktuatsionnaya setka molekulyarnykh zatsepleniy i prochnost amorfnykh stekloobraznykh polimerov. Doklady AN USSR, 1990, no. 8(B): 48–51.
  21. Kozlov G.V., Novikov V.U. Klasternaya model amorfnogo sostoyaniya polimerov. Uspekhi fizicheskikh nauk, 2001, 171, no. 7: 717–764.
  22. Olemskoy O.I., Harchenko D.O. Teoriya samopodibnih stohastichnih sistem (part 1). Zhurnal fizichnih doslidzhen, 2002, 6, no. 3: 253–288.
  23. Shevchuk T.M., Bordyuk M.A. Fraktalnist ta parametr Gryunayzena polimernih sistem z vid’emnim koefitsientom Puassona. Fizika i himiya tverdogo tila, 2016, 17, no. 4: 476–482.
  24. Kozlov G.V. Struktura i svoystva dispersno-napolnennykh polimernykh nanokompozitov. Uspekhi fizicheskikh nauk, 2015, 185, no. 1: 35–54.
  25. Bordyuk M.A., Kolupaev B.S., Voloshin O.M., Levchuk V.V. Akustichni vlastivosti i strukturni parametri napovnenogo polivinilhloridu. Ukrayinskiy fizichniy zhurnal, 1996, 41, no. 1: 111–114.