№2 (2017) 1

https://doi.org/10.15407/polymerj.39.02.75

E.A. Lysenkov1, O.V. Striutskyi2, S.I. Bokhvan2, V.V. Klepko2

 

1 Mykolayiv V.O. Sukhomlinskiy National University

24, Nikolska Str., Mykolayiv, 54030, Ukraine

2 Institute of Macromolecular Chemistry of NAS of Ukraine

48, Kharkivske highway, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, № 2: 75-82.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

This work is devoted to the study of influence of endgroups of olygoethylene glycol (OEG) on the percolation behavior of nanocomposites, filled by carbon nanotubes (CNT). The composіtes based on two types of OEG-400, containing hydroxylic endgroups (OEG–OH) and containing acetate endgroups (OEG–Ac) were used for the study of this influence. It is set that a general level of conductivity of the system based on OEG–OH is higher, than for the system based on OEG–Ac, that is explained the change of the conductivity level of OEG matrix as a result of its acilation. It is discovered that values of percolation threshold increase with substituting of hydroxylic endgroups by the acetatic, that can be explained different character of interaction between a polymeric matrix and CNT. The analysis of critical exponents rotined that values of the exponent t for both investigated systems were similar, but the values of critical exponent s differ substantially. Such conformities in the values of critical exponents specify on that interaction of endgroups of olygoether and CNT is instrumental in forming of more fluffy clusters, however it is not influences on the process of their association in a percolation cluster.

 

Keywords: nanocomposites, percolation behavior, carbon nanotubes, conductivity, interphase interaction.

 

References

  1. 1. Spitalsky Z., Tasis D., Papagelis D., Galiotis S. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Progr. Polym. Sci. 2010, 35: 357–401.
    https://doi.org/10.1016/j.progpolymsci.2009.09.003
     
    2. Schadler L. Nanocomposites – Model interfaces. Nat. Mater. 2007, 6: 257–258.
    https://doi.org/10.1038/nmat1873
     
    3. Song K., Zhang Y., Meng J., Green E.C., Tajaddod N., Li H., Minus M.L. Materials. 2013, 6: 2543–2577.
    https://doi.org/10.3390/ma6062543
     
    4. Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41: 1853–1859.
    https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
     
    5. Banerjee S., Hemraj-Benny T., Wong S.S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17: 17–29.
    https://doi.org/10.1002/adma.200401340
     
    6. Li Q., Dong L., Li L., Su X., Xie H., Xiong C. The effect of the addition of carbon nanotube fluids to a polymeric matrix to produce simultaneous reinforcement and plasticization. Carbon. 2012, 50: 2056–2060.
    https://doi.org/10.1016/j.carbon.2011.12.051
     
    7. Madhukar K., Sainath A.V.S., Rao B.S., Kumar D.S., Bikshamaiah N., Srinivas Y., Babu N.M., Ashok B. Role of carboxylic acid functionalized single walled carbon nanotubes in polyamide 6/poly(methyl methacrylate) blend. Polym. Eng. Sci. 2012, 53: 394–402.
     
    8. Monthioux M., Smith B.W., Burteaux B., Claye A., Fischer J.E., Luzzi D.E. Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation. Carbon, 2001, 39: 1251–1272.
    https://doi.org/10.1016/S0008-6223(00)00249-9
     
    9. Strano M.S., Dyke C.A., Usrey M.L., Barone P.W., Al-len M.J., Shan H., Kittrell C., Hauge R.H., Tour J.M., Smalley R.E. Electronic structure control of single-walled carbon nanotube functionalization. Science, 2003, 301: 1519–1522.
    https://doi.org/10.1126/science.1087691
     
    10. Zhang Z.Q., Liu B., Chen Y.L., Jiang H., Hwang K.C., Huang Y. Mechanical properties of functionalized carbon nanotubes. Nat. Nanotechnol, 2008, 19: 395702 (6 pp).
     
    11. O’Connell M.J., Bachilo S.M., Huffman C.B., Moore V.C., Strano M.S., Haroz E.H., Rialon, K.L., Boul P.J., Noon W.H., Kittrell C., Ma J.P., Hauge R.H., Weisman R.B., Smalley R.E. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 2002, 297: 593–596.
    https://doi.org/10.1126/science.1072631
     
    12. Blanch, A.J., Lenehan, C.E., Quinton, J.S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Polym. Sci. Polym. Lett. B., 2010, 114: 9805–9811.
    https://doi.org/10.1021/jp104113d
     
    13. Lee H.W., You W., Barman S., Hellstrom S., LeMieux M.C., Oh J.H., Liu S., Fujiwara T., Wang W.M., Chen B., Jin Y.W., Kim J.M., Bao Z.A. Lyotropic liquid-crystalline solutions of high-concentration dispersionsof single-walled carbon nanotubes with conjugated polymers. Small, 2009, 5: 1019–1024.
    https://doi.org/10.1002/smll.200800640
     
    14. Premkumar T., Mezzenga R., Geckeler K.E. Carbon nanotubes in the liquid phase: Addressing the issue of dispersion. Small, 2012, 8: 1299–1313.
    https://doi.org/10.1002/smll.201101786
     
    15. Melezhik A.V., Sementsov Yu.I., Yanchenko V.V. Sintez tonkix uglerodnyh nanotrubok na soosazhdennyh metalloksidnyh katalizatorah. Jurn. prikl. himii, 2005, 78, no. 6: 938-944.
     
    16. Lysenkov E., Melnyk I., Bulavin L., Klepko V., Lebovka N. Structure of polyglycols doped by nanoparticles with anisotropic shape. In: Physics of Liquid Matter: Modern Problems, Springer Proceedings in Physics / L. Bulavin and N. Lebovka (Eds.). Switzerland: Springer International Publishing, 2015: 165–198, ISBN 978-3-319-20875-6.
    https://doi.org/10.1007/978-3-319-20875-6_7
     
    17. Kyritsis A., Pissis P., Grammatikakis J. Dielectric relaxation spectroscopy in poly(hydroxyethy acrylate)/water hydrogels. J. of Polymer Sci.: Part B: Polymer Physics, 1995, 33: 1737-1750.
    https://doi.org/10.1002/polb.1995.090331205
     
    18. Lin Y., Taylor S., Li H., Fernando K.A.S., Qu L., Wang W., Gu L., Zhou B., Sun Y.-P. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem, 2004, 14: 527 – 541.
    https://doi.org/10.1039/b314481j
     
    19. Islam M.F., Rojas E., Bergey D.M., Johnson A.T., Yodh A.G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett, 2003, 3: 269–273.
    https://doi.org/10.1021/nl025924u
     
    20. Shim M., Wong N., Kam S., Chen R.J., Li Y., Dai H. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett, 2002, 2: 285–288.
    https://doi.org/10.1021/nl015692j
     
    21. Vaisman L., Wagner H.D., Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid. Interface. Sci., 2006, 128-130: 37–46.
    https://doi.org/10.1016/j.cis.2006.11.007
     
    22. Kirkpatrick S. Classical transport in disordered media: Scaling and effective- medium theories. Phys. Rev. Lett., 1971, 27: 1722-1725.
    https://doi.org/10.1103/PhysRevLett.27.1722
     
    23. Stauffer D., Aharony A. Introduction to percolation theory. London. Taylor and Francis, 2003, ISBN 0-7484-0253-5.
     
    24. Polymer electrolytes. / F.M. Gray, J.A. Connor (Eds.). Cambridge, UK: Royal Society of Chemistry, 1997, ISBN 0-85404-557-0.
     
    25. Li Y.J., Xu M., Feng J.Q. Dielectric behavior of a metal-polymer composite with low percolation threshold. Appl. Phys. Lett., 2006, 89: 072902-1–072902-4.
    https://doi.org/10.1063/1.2337157