№2 (2017) 4

https://doi.org/10.15407/polymerj.39.02.95

Investigation of polymer matrices based on cross-linked polyacrylamide and b-cyclodextrin-containing pseudorotaxane by pyrolysis mass spectrometry

 

L.A. Orel, V.V. Boyko, V.I. Bortnitskiy, L.V. Kobrina, S.I. Sinelnikov, O.A. Radchenko, S.V. Riabov

 

Institute of Macromolecular Chemistry the NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, № 2: 95-100.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

Formation and studying of different inclusion complexes, which could be attributed to the supramolecular structures, are still remaining among an actual topics in the modern polymer chemistry. According to the experts’ opinion, working in the field of supramolecular chemistry, identification of inclusion complexes’ composition is one of the most difficult and promising tasks.

In this work, the structure of polymer matrices, involving acrylamide and methylene-bis-acrylamide with different content of pseudorotaxane (PR) was studied by the pyrolysis mass spectrometry method. Temperature decomposition, rate of total ion current, probable composition of samples’ ion fragments and intensity of their isolation in the mass spectra of polyacrylamide with different content of PR during pyrolysis have been monitored. Thus, these findings are able to explain the processes of the bonds formation between PR’s molecules and polymer matrice’s chains.

 

Key words: pyrolysis mass spectrometry, polymer matrices, b-cyclodextrin, polyacrylamide, pseudorotaxane, structure.

 

References

  1. 1. Bender M.L. Komillama M. Cyclodextrins chemistry. Springer verlag, Berlin, 1978.
    https://doi.org/10.1007/978-3-642-66842-5
     
    2. Szejtli J. Cyclodextrin and their inclusion complexes. Akademiai Kiado, Budapest, 1982.
     
    3. Szejtli J. Cyclodextrin technology. Kluver academic publishers, Dordrecht, 1988.
    https://doi.org/10.1007/978-94-015-7797-7
     
    4. Harada A., Kamachi M. Complex formation between cyclodextrin and poly(propylene glycol). J. of the Chem. Society, Chem. Communications, 1990, Vol. 19: 1322–1323.
    https://doi.org/10.1039/c39900001322
     
    5. Harada A., Kamachi M. Complex formation between poly(propylene glycol) and α-cyclodextrin. Macromolecules, 1990, Vol. 23: 2821–2823.
    https://doi.org/10.1021/ma00212a039
     
    6. Harada A., Li j., Kamachi M. The molecular necklace: A rotaxane-containing many-threaded α-cyclodextrin. Nature, 1992, Vol. 356: 325–327.
    https://doi.org/10.1038/356325a0
     
    7. Harada A., Li j., Kamachi M. Preparation and properties of inclusion complexes poly(ethylene glycol) with α-cyclodextrins. Macromolecules, 1993, Vol. 26: 5698–5703.
    https://doi.org/10.1021/ma00073a026
     
    8. Harada A., Li j.,Nakamitcu T., Kamachi M. Preparation and characterization of polyrotaxanes containing many threaded α-cyclodextrins. J. of Organic Chem., 1993, Vol. 58: 7524–7528.
    https://doi.org/10.1021/jo00078a034
     
    9. Harada A., Li j., Kamachi M. Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol). Nature, 1994, Vol. 370: 126–128.
    https://doi.org/10.1038/370126a0
     
    10. Harada A., Li j., Kamachi M. Preparation and Characterization of a Polyrotaxane Consisting of Monodisperse Poly(ethylene glycol) and α-cyclodextrins. J. of the American Chem. Society, 1994, Vol. 116: 3192–3196.
    https://doi.org/10.1021/ja00087a004
     
    11. Harada A., Okada M., Li j., Kamachi M. Preparation and characterization of inclusion complexes of poly (propylene glycol) with cyclodextrins. Macromolecules, 1995, Vol. 28: 8406–8411.
    https://doi.org/10.1021/ma00128a060
     
    12. Riabov S.V., Boyko V.V., Bortnytskyy V.I., Dmytriyeva T.V., Kobrina L.V., Kercha Y.Y. Mas-spektrometrychne doslidzhennya oderzhanykh u vodnomu seredovyshchi kompleksiv vklyuchennya sililirovanoho pokhidnoho b-tsyklodekstrynu z orhanichnymy spolukamy [Mass-spectrometric studies of inclusion complexes of silylation derivative of b-cyclodextrin with organic compounds obtained in the aqueous environment]. Ukrainian chem. j., 2009, 75, no. 11: 58–63 (in Ukrainian).
     
    13. Riabov S.V., Boyko V.V., Bortnytskyy V.I., Dmytriyeva T.V., Babich I.V., Kercha Y.Y. Mas-spektrometrychne doslidzhennya kompleksu vklyuchennya b-tsyklodekstrynu z albuminom [Mass-spectrometric studies of inclusion complex of b-cyclodextrin with albumin]. Polymer J., 2012, 34, no. 3: 283–286 (in Ukrainian).
     
    14. Babich I.V., Riabov S.V., Boyko V.V., Dmytriyeva T.V., Bortnytskyy V.I., Kozlov A.V., Kercha Y.Y. Kompleksy vklyuchennya tsyklodekstryniv z albuminom [Inclusion complexes of cyclodextrins with albumin]. Reports NANU, 2013, no. 1: 118–122 (in Ukrainian).
     
    15. Orel L.A., Boyko V.V., Bortnitskiy V.I., Kobrina L.V., Sinelnikov S.I., Riabov S.V. Doslidzhennya b-tsyklodekstrynvmisnoho psevdorotaksanu metodom pirolitychnoyi mas-spektrometriyi [Investigation of b-cyclodextrincontaining pseudorotaxane by pyrolysis mass spectrometry method]. Polymer J., 2017, no. 1: 302–306 (in Ukrainian).
     
    16. Beinon J. Mass-spektrometriya i yeye primeneniye v organicheskoy khimii [Mass-spectrometry and its application in organic chemistry]. Per. s angl. Mir, Moskva, 1964: 701 (in Russian).
     
    17. Hmelnitskiy R.A., Lukashenko I.I., Brodskiy A.S. Piroliticheskaya mass-spektrometriya vyisokomoleku-lyarnyih soedineniy [Pyrolysis Mass Spectrometry of Macromolecular Compounds]. Himiya, Moskva, 1980: 280 (in Russian).
     
    18. Boyko V.V., Riabov S.V. Kobrina L.V., Dmytriyeva T.V., Shtompel V.I., Hayduk R.L., Kercha Y.Y. Protsesy biodehradatsiyi sehmentovanykh poliuretaniv [Biodegradation processes of segmented polyurethanes]. Ukrainskii Khimicheskii Zhurnal, 2007, 73, no. 7: 51–60 (in Ukrainian).
     
    19. Sidel’nikov V.N., Gur’yanova L.V., Utkin V.A., Malakhov V.V., Kolchin A.M. Katalog sokrashchennyh massspektrov [Short catalogue of mass spectra.]. Nauka, Novosibirsk, 1981: 187 (in Russian).