№2 (2017) 5
https://doi.org/10.15407/polymerj.39.02.101
Study of biodegradation of polymer thermoplastic starch-derivative composite materials
O.P. Nedilko1, K.M. Tymchenko1, D.A. Mishurov2
1 V.N. Karazin Kharkiv National University
4, Svobody square, Kharkiv, 61022, Ukraine
2 National Technical University «Kharkiv Polytechnical Institute»
21, Frunze str., Kharkiv, 61002, Ukraine
Polym. J., 2017, 39, № 2: 101-108.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The results of the biodegradation study of thermoplastic starch-derivative polymers with different content of montmorillonite (MMT) under the influence of mold fungi are presented. Standard methods for evaluation of the physical and mechanical properties of the composites, the growth rate of biodestructor fungi on the surface of test material samples and the weight loss at the end of the experiment were used. It was shown that resulting polymer composite materials are biodegradable by the Aspergillus niger, Penicillium chrysogenum and Trichoderma viridescens fungi. Under conditions of mineral contamination and high moisture, the given materials showed no resistance to these fungi. In the end of the experiment the samples not only lost weight but gained new morphological features: lost their shape and changed color under the influence of fungal enzymes, which also indicates the process of degradation. Biodegradability of given composite materials was confirmed by infrared spectroscopy. Aspergillus niger was found to be the most active toward the test samples. It was shown that the filling of thermoplastic starch with montmorillonite is useful only with the filling rate of 1 %. Further filling with MMT decreases the physical and mechanical properties of the composites.
Keywords: polymer material, thermoplastic starch, biodegradability, biodestructor fungi, IR-spectrs, physical and mechanical properties.
References
-
1. Larionov V.G. Samorazlagayushiesja polimernye materialy [Self-degrading polymer materials], Plasticheskie massy, 1993, no. 4: 36-39 (in Russian). 2. Fomin V.A., Guzeev V.V. Biorazlagaemye polimery, sostojanie i perspectivy ispolzovanija [Biodegradable polymers, state of art and perspectives], Plasticheskie massy, 2001, no. 2: 42-46 (in Russian). 3. Alyoshin A.A., Panov Y.T., Kudryavtseva Z.A. Biorazrushaemaja polymernaja kompositsija [Biodegradable polymer composition], Sovremennye naukoemkie tekhnologii, 2007, no. 6: 29-31 (in Russian). 4. Krzhan A.S., Osipov I.T. Biorazlagaemye polimery i plastiki [Biodegradable polymers and plastics], Novye khimicheskie tekhnologii, 2009, no. 9: 2 (in Russian). 5. Kryazhev V.N., Romanov V.V., Shirokov V.A. Poslednie dostizhenija khimii i tekhnologii proizvodnykh krakhmala [Recent achievements of chemistry and technology of starch derivatives], Khinia rastitelnogo syrja, 2010, no. 1: 5-12. 6. Suslin M., Nedilko O., Mishurov D. The influence of alkylammonium modified clays on the fungal resistance and biodeterioration of epoxy-clay nanocomposites. J. Internat. Biodeter. & Biodegrad. 2016. 110: 136-140.
https://doi.org/10.1016/j.ibiod.2016.03.0217. GOST 9.049-91 ESZSK. Materialy polimernye i ikh komponenty. Metody ispytanij na stojkost’ k vozdejstviju plesnevykh gribov [National state standard GOST 9.049-91 USCAP. Polymer materials and components. Methods of testing for resistance to mould fungi]. 8. GOST 9.048-89 ESZSK. Izdelija tekhnicheskie. Metody ispytanij na stojkost’ k vozdejstviju plesnevykh gribov [National state standard GOST 9.048-89 USCAP. Product specifications. Methods of testing for resistance to mould fungi]. 9. GOST 14235-69. Plastmassy. Metod opredelenija udarnoj vjazkosti na pribore tipa Dinstat. [National state standard GOST 14235-69. Plastics. The method of impact strength measuring using the Dinstat device]. 10. GOST 17036-71. Plastmassy. Metod ispytanija na izgib na pribore tipa Dinstat [Plastics. The method of bend-over testing using the Dinstat device]. 11. Medhat Ibrahim, Moussa Alaam, Hanan El-Haes, Abraham F. Jalbout, Aned de Leon. Analysis of the structure and vibrational spectra of glucose and fructose. Ecl. Quam., Sao Paulo. 2006. 31(3): 15-21. 12. Tarasevich Y.Y. Perkolatsija: teorija, prilozhenija, algoritmy: Uchebnoe posobije [Percolation: the theory, applications, algorithms: Textbook], M: Editorial URSS, 2002, 112 (in Russian). 13. Efros A.L. Fizika i geometrija besporjadka [Physics and geometry of disorder], M: Nauka, 1982, 176 (in Russian). 14. Snarskii A.A., Bezsudnov I.V., Sevryukov V.A. Processy perenosa v macroskopicheski neuporjazdochennykh sredakh: ot teorii srednego polja fo perkoljatsii [Transport processes in macroscopically disordered media: from the mean-field theory to percolation], M: LKI, 2007, 304 (in Russian).