2015 (2) 7

https://doi.org/10.15407/polymerj.37.02.157

Electrical and mechanical properties of the systems based on the cross-linked polyurethanes modified with multiwalled carbon nanotubes

 

Z.O. Gagolkina1, E.V. Lobko1, Y.V. Yakovlev1, E.A. Lysenkov2, V.V. Klepko1

 

1Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine. E-mail: GagolkZoya@i.ua

2Mykolayiv National University named after V.O. Sukhomlynskiy

24, Nikolska str., Mykolayiv, 54030, Ukraine

 

Polym. J., 2015, 37, no. 2: 157-161.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

Electrical conductivity, tensile strenght and elongation at break of the composites on the base of cross-linked polyurethanes with multiwalled carbon nanotubes were investigated depending on the concentration of fillers. It was shown at the filler content of 0,0034 vol. the electrical conductivity was increased from 10-10 (for polyurethane matrix) to 10-6 S/cm (with filler content of 0,0052 vol.).This effect caused of electrical percolation treshold. It was shown that the introduction of carbon nanotubes leads to growing of tensile strength and decreasing of elongation at break of polyurethane composites. In particular, the increasing of tensile strength passes through the maximum with filler content 0,0042 vol.. And at this point the value of tensile strenght is equal to 14,3 MPa (the tensile strength for original polyurethane matrix is equal to 4,3 MPa). In contrast, the elongation at break decreases with increasing of filler concentration (from 837 % for original polyurethane to 423 % at the filler content is equal 0,0047 vol.) that causes by reinforcing effect of carbon nanotubes in polyurethane matrix.

 

Keywords: polyurethanes, carbon nanotubes, electrical conductivity, tensile strength, elongation at break.

 

Література

1. Romero D.B., Carrard M., de Heer W.A., Zuppiroli L. // AdV. Mater. – 1996. – № 4. – P. 899-902.
2. Curran S.A., Ajayan P.M., Blau W.J., Carroll D.L., Coleman J.N., Dalton A.B., Davey A.P., Drury A., McCarthy B., Maier S., Strevens A.A. // A. AdV. Mater. – 1998. – 10, № 11. – P. 1091-1098.
4. Calvert P., Min Xu, Tao Zhang, Bing Gu, Jieli Wu, Qun C. // Nature.- 1999. – 45, № 3. – P. 210-217.
5. Qian D., Dickey E.C., Andrews R, Rantell T. // Applied Physics Lett. – 2000. – 76. – P. 2868-2879.
6. Jingrong W., Haiping X., Dandan Y., Yihua Wu. // Fibers and Polymers. – 2013. – 14, №.4. – P. 571-577.
7. Zunfeng L., Gang B., Yi H., Yanfeng M., Feng D., Feifei L., Tianying G., Yongsheng C. // Carbon. – 2007. – 45. – P. 821 – 827.
8. Zhang R., Dowden A., Deng H., Baxendale M., Peijs T. // Composites Sci. and Technology. – 2009. – 69. – P. 1499 – 1504.
9. Wang J., Xu H., Yang D., Wu Y. // Composites Fibers and Polymers. – 2013. – 14, № 4. – P. 571 – 577.
10. Shuzhong Guo, Chao Zhang, Weizhi Wang, Tian- ci Liu, Wuiwui Chauhari Tjiu, Chaobin He, Wei-De Zhang. // Polymers & Polymar Composites. – 2008. – 16, № 8. – P. 423 – 430.
11. Chen W., Tao X., Liu Y. // Composites Sci. and Technology. – 2006. – № 66. – P. 3029 – 3034.
12. Koerner H., Liu W., Max A., Mirau P., Dowty H., Richard V. // Polymer – 2005. – № 46. – P. 4405 – 4420.
13. Kovacs J., Velagala B., Schulte K., Bauhofer W. // Compos. Sci. Technol. – 2007. – № 67. – P. 922 – 931.
14. Kirkpatrick S. Percolation and conduction // Reviews of Modern Physics. – 1973. – 45, No. 4. – P. 574.
15. ГОСТ 14236-81 Пленки полимерные. Метод испытания на растяжение. – М.: Гос. ком. по стандартам, 1981. – 9 с.
16. Stauffer D., Aharony A. Introduction to percolation theory. – London: Taylor & Francis, 2003.