2016 (1) 1
https://doi.org/10.15407/polymerj.38.01.003
Thermal and electrical conductivity of the polymer-metal composites with 1D structure of filler formed in a magnetic field
Ye.P Mamunya V.V. Levchenko, I.M. Parashchenko, E.V. Lebedev
Institute of Macromolecular Chemistry of NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2016, 38, no. 1: 3-17.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The electrical and thermal properties of the metal-filled composites with a statistical three-dimensional 3D and an oriented one-dimensional 1D structure of the filler, which is formed in a magnetic field, have been studied. Composites based on thermosetting resin (silicone) and the thermoplastic polymer LDPE comprising metal fillers Fe and Ni with a particle size of 3 and 10 microns, respectively, were prepared. A significant increase in electrical conductivity and reduced percolation threshold from 25 to 4 % vol., as well as 1.5 times increase in thermal conductivity in the composites silicone-Fe and LDPE-Ni with 1D structure of the filler were revealed. Also, there were analyzed in details and quantitatively estimated the factors which restrict the achievement of ultrahigh (approaching the characteristics of metal) thermal and electrical conductivity values in the case of forming a conductive 1D structure. High thermal resistance at the interface between the metal particle–polymer matrix and particle–particle limits the thermal transport along the percolation cluster of the metal filler. The calculations of the interfacial thermal contact resistance were fulfilled. Analysis of the mechanism of heat transfer or flow of electric current through the direct contacts particle–particle and the corresponding calculations show that the contact spot does not make a significant contribution to heat transfer, resulting in the formation of a cluster of conductive filler particles and does not affect the thermal conductivity. In the case of electrical conductivity the contact spots play a crucial role in formation of the conductive cluster and an electric current flow through the metal filler.
Key words: polymer composite, one-dimensional structure, magnetic field, thermal conductivity, electrical conductivity, percolation threshold, contact thermal resistance.
Література
1. Metal, ceramic and polymeric composites for various uses. Ed.: J. Cuppoletti. – Rijeka, Croatia: InTech, 2011. – ISBN 978-953-307-353-8.
2. Advances in nanocomposites – synthesis, characterization and industrial applications. Ed.: B.S.R. Reddy. – Rijeka, Croatia: InTech, 2011. – ISBN 978-953-307-165-7.
3. Leblanc J.L. Filled polymers. Science and industrial applications. – Boca Raton, New York: CRC Press – Taylor & Francis Group., 2010. – ISBN 978-1-4398-0042-3.
4. Conductive polymers and plastics in industrial applications. Ed.: L. Rupprecht. – New York: Plastics Design Library, 1999. – ISBN l-884207-77-4.
5. Particulate-filled polymer composites. Ed.: R.N. Rothon. – Shawbury, UK: Rapra Technology, 2003. – ISBN 1-85957-382-7.
6. Functional fillers for plastics. Ed.: M. Xanthos. – Weinheim: WILEY-VCH Verlag GmbH, 2005. – ISBN 978-3-527-31054-8.
7. Metal-filled polymers. Properties and applications. Ed.: S.K. Bhattachrya. – New York: Marcel Dekker Inc., 1986. – ISBN 0-8247-7555-4.
8. Mamunya Ye.P., Davydenko V.V., Pissis P., Lebedev E.V. Electrical and thermal conductivity of polymers filled with metal powders // Europ. Polym. J.- 2002.- 38.- P. 1887-1897.
9. Mamunya Ye.P., Muzychenko Yu.V., Pissis P., Lebe- dev E.V., Shut M.I. Percolation phenomena in polymers containing dispersed iron // Polym. Eng. Sci.- 2002.- 42, No 1.- P. 90-100.
10. Xue Q. The influence of particle shape and size on electric conductivity of metal-polymer composites // Europ. Polym J. – 2004.- 40.- P. 323-327.
11. Boudenne A., Ibos L., Fois M., Gehin E., Majeste J-C. Thermophysical properties of PP/aluminum composites // J. Polym. Sci. – Polym. Phys.- 2004.- 42, No 4.- P.722-732.
12. Weidenfeller B., Hofer M., Schilling F.R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene // Composites. Part A. – 2004, 35.- P. 423-429.
13. Boudenne A., Ibos L., Fois M., Majeste J-C., Gehin E. Electrical and thermal behavior of polypropylene filled with copper particles // Composites. Part A. – 2005.- 36.- P. 1545-1554.
14. Krupa I., Cecen V., Boudenne A., Prokeљ J., Novak I. The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder // Materials and Design. – 2013.- 51.- P. 620–628.
15. Мамуня Є.П., Юрженко М.В., Лебедєв Є.В., Левченко В.В., Черваков О.В., Матковська О.К., Свердліковська О.С. Електроактивні полімерні матеріали. – Київ: Альфа-реклама, 2013, 402 с. – ISBN 978-966-2477-94-8.
16. Roussel F., King R.C.Y., Kuriakose M., Depriester M., Hadj-Sahraoui A., Gors C., Addad A., Brun J-F. Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials // Synthetic Metals. – 2015. – 199.- P. 196-204.
17. Jouni M., Boudenne A., Boiteux G., Massardier V., Garnie B., Serghei A. Electrical and thermal properties of polyethylene/silver nanoparticle composites // Polym. Compos.- 2013.- 34.- P. 778–786.
18. Goh P.S., Ismail A.F., Ng B.C. Directional alignment of carbon nanotubes in polymer matrix: contemporary approaches and future advances // Composites (JCOMA). Part A. – 2014.- 56. – P. 103-126.
19. Filipcsei G., Csetneki I., Szilagyi A., Zrinyi M. Magnetic field-responsive smart polymer composites // Adv. Polym. Sci. – 2007. – 206. – P. 137–189.
20. Camponeschi E., Vance R., Al-Haik M., Garmestani H., Tannenbaum R. Properties of carbon nanotube–polymer composites aligned in a magnetic field // Carbon. – 2007.- 45.- P. 2037–2046.
21. Kaleta J., Lewandowski D., Mech R., Zaja P. Smart magnetic composites.- Chapter 24. // In book: Metal, ceramic and polymeric composites for various uses. Ed.: J. Cuppoletti.- Rijeka, Croatia: InTech, 2011. – ISBN 978-953-307-353-8.
22. Varga Z., Filipcsei G., Zrinyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus // Polymer. – 2006.- 47.- P. 227–233.
23. Fischer J.E., Zhou W., Vavro J., Llaguno M.C., Guthy C., Haggenmueller R. Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties // J. Appl. Phys.- 2003.- 93, No 4.- P. 2157-2163.
24. Leng J.S., Huang W.M., Lan X., Liu Y.J., Du S.Y. Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite // Appl. Phys. Lett.- 2008.- 92.- P. 204101-3.
25. Han B., Ma F., Feng T., Jiang H., Wang Y. Effect of magnetis field treatment on properties of thermosetting polymers and their composites // Proceed. 9th Int. Conf. on Properties and applications of dielectric materials – 2009, Harbin, China.
26. Kim I.T., Tannenbaum A., Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices // Carbon. – 2011.- 49.- P. 54–61.
27. Boudenne A., Mamunya Ye., Levchenko V., Garnier B., Lebedev E. Improvement of thermal and electrical properties of silicone-Ni composites using magnetic field // Europ. Polym. J.- 2015.- 63.- P. 11–19.
28. Abdalla M., Dean D., Theodore M., Fielding J., Nyairo E., Price G. Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties // Polymer. – 2010.- 51.- P. 1614–1620.
29. Hu T., Xie H., Chen L., Zhong G., Zhang H. Preparation and orientation behavior of multi-walled carbon nanotubes grafted with a side-chain azobenzene liquid crystalline polymer // Polym. Int.- 2011.- 60.- P. 93–101.
30. Ma C., Zhang W., Zhu Y., Ji L., Zhang R., Koratkar N., Liang J. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field // Carbon. – 2008.- 46.- P. 706-720.
31. Schwarz M-K., Bauhofer W., Schulte K. Alternating electric field induced agglomeration of carbon black filled resins // Polymer. – 2002.- 43, No 10.- P. 3079–3082.
32. Park C., Wilkinson J., Banda S., Ounaies Z., Wise K.E., Sauti G., Lillehei P.T., Harrison J.S. Aligned singlewall carbon nanotube polymer composites using an electric field // J. Polym. Sci. Part B. – 2006.- 44, No 12.- P. 1751–1762.
33. Kai Yu., Zhang Z., Liu Y., Leng J. Carbon nanotube chains in a shape memory polymer/carbon black composite: to significantly reduce the electrical resistivity // Appl. Phys. Lett.- 2011.- 98.- P. 074102(1-3).
34. Chen Y.M., Ting J.M. Ultra high thermal conductivity polymer composites // Carbon. – 2002.- 40, No 3.- P. 359–362.
35. Stauffer D., Aharony A. Introduction to percolation theory. – London: Taylor&Francis Ltd., 1992.
36. Grimaldi C., Balberg I. Tunneling and nonuniversality in continuum percolation systems // Phys. Rev. Lett.- 2006.- 96, No 6.- P. 066602(1-4).
37. Thomsen C. Critical exponents and percolation thresholds in two-dimensional systems with a finite interplane coupling // Phys. Rev.- 2002.- 65.- P. 065104(1-4).
38. Mamunya Ye.P., Zois H., Apekis L., Lebedev E.V. Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites // Powder Technology. – 2004.- 140.- P. 49-55.
39. Diaz-Bleis D., Vales-Pinzуn C., Freile-Pelegrнn Y., Alvarado-Gil J.J. Thermal characterization of magnetically aligned carbonyl iron/agar composites // Carbohydr. Polym.- 2014.- 99.- P. 84- 90.
40. Huang H., Liu C., Wu Y., Fan S. Aligned carbon nanotube composite films for thermal management // Advanced Materials. – 2005.- 17.- P. 1652-1656.
41. Datsyuk V., Trotsenko S., Reich S. Carbon-nanotube–polymer nanofibers with high thermal conductivity // Carbon. – 2013.- 52.- P. 605–608.
42. Carson J.K., LovattS.J., Tanner D.J., Cleland A.C. Predicting the effective thermal conductivity of unfrozen, porous foods // J. Food Eng.- 2006.- 75.- P. 297–307.
43. Pal R. On the Lewis-Nielsen model for thermal/electrical conductivity of composites // Composites: Part A: Appl. Sci. & Manufact.- 2008.- 39.- P. 718-726.
44. Chikhi M., Agoudjil B., Haddadi M., Boudenne A. Numerical modelling of the effective thermal conductivity of heterogeneous materials // J. Thermopl. Comp. Mater.- 2013.- 26, No 3.- P. 336-345.
45. Progelhof R.C., Throne J.L., Ruetsch R.R. Methods for predicting the thermal conductivity of composite systems: a review // Polym. Eng. Sci.- 1976.- 16, No 9.- P. 615–625.
46. Han Z., Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review // Progress in Polym. Sci. – 2010.- 36, No 7.- P. 914-944.
47. Sebastian M.T., Jantunen H. Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review // Int. J. Appl. Ceram. Technol.- 2010.- 7, No 4.- P. 415–434.
48. Nejad S.J. A review on modeling of the thermal conductivity of polymeric nanocomposites // e-Polymers. – 2012. – No. 025. – P. ???
49. Duong H.M., Yamamoto N., Papavassiliou D.V., Maruyama S., Wardle B.L. Inter-carbon nanotube contact in thermal transport of controlled-morphology polymer nanocomposites // Nanotechnology. – 2009.- 20, No 15.- P. 5702.
50. Huxtable S.T., Cahill D.G., Shenogin S., Xue L., Ozisik R., Barone P., Usrey M., Strano M.S., Siddons G., Shim M., Keblinski P. Interfacial heat flow in carbon nanotube suspensions // Nature Materials. – 2003.- 2, No 11.- P. 731-734.
51. Hida S., Hori T., Shiga T., Elliott J. Shiomi J. Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene // Int. J. Heat & Mass Transfer. – 2013.- 67.- P. 1024–1029.
52. Garnier B., Dupuis T., Gilles J., Bardon J.P., Danes F. Thermal contact resistance between matrix and particle in composite materials measured by a thermal microscopic method using a semi-intrinsic thermocouple // Proc. 12 th Int. Heat Transfer Conf.- Grenoble, France, 2002.- P. 9-14, Paris: Elsevier, 2002.
53. Nan C-W., Liu G., Lin Y., Li M. Interface effect on thermal conductivity of carbon nanotube composites // Appl. Phys. Lett.- 2004.- 85, No 16.- P. 3549-3551.
54. Droval G., Feller J.-F., Salagnac P., Glouannec P. Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites // Polym. Adv. Technol.- 2006.- 17.- P. 732–745.
55. Shenogina N., Shenogin S., Xue L., Keblinski P. On the lack of thermal percolation in carbon nanotube composites // Appl. Phys. Lett.- 2005.- 87.- P. 133106.
56. Cheng Z., Liu L., Lu M., Wang X. Temperature dependence of electrical and thermal conduction in single silver nanowire // Scientific Reports. – 2015.- 5.- P. 10718, DOI: 10.1038/srep10718.
57. Wu H., Drzal L.T. High thermally conductive graphite nanoplatelet/polyetherimide composite by precoating: effect of percolation and particle size // Polym. Compos.- 2013.- 34.- P. 2148-2153.
58. Ahn K., Kim K., Kim J. Fabrication of surface-treated BN/ETDS composites for enhanced thermal and mechanical properties // Ceramics International. – 2015.- 41, No 8.- P. 9488–9495.
59. Mamunya E.P. Electrical and thermal conductivity of metal-filled composites // Functional Materials. – 1998. – 5, No 3.- P. 410-412.
60. Хольм Р. Электрические контакты. – М: Изд-во иностр. л-ры, 1961. – 464 с.
61. Гуль В.Е., Шенфиль Л.З. Электропроводящие полимерные композиции. – М: Химия, 1984. – 240 с.
62. Strumpler R., Glatz-Reichenbach J. Conducting polymer composites // J. Electroceramics. – 1999. – 3, No 4. – P. 329-346.
63. Nicolics J., Mьndlein M. Electrically conductive adhesives // In book: Eds.: Suhir E., Lee Y.C., Wong C.P. Micro- and Opto- Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging.- Berlin: Springer, 2007. – v.2., Chapter 21. – P. 571-610. – ISBN 978-0-387-27974-9.
64. Pezzotti G., Kamada I., Miki S. Thermal conductivity of AlN/polystyrene interpenetrating networks // J. Europ. Ceram. Soc.- 2000.- 20.- P. 1197-1203.