2016 (1) 3
https://doi.org/10.15407/polymerj.38.01.024
Features of the formation, the phase structure, viscoelastic and mechanical properties of the binary polymer matrice based on polymethylmethacrylate, modified by crosslinked polyurethane
N.V. Babkina, T.D. Ignatova, L.F. Kosyanchuk, O.I. Antonenko, L.A. Vorontsova, O.V. Babich
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shоse, Kyiv, 02160, Ukraine
Polym. J., 2016, 38, no. 1: 24-33.
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The kinetic regularities of formation, feature of the phase morphology, viscoelastic and mechanical properties of binary polymer matrice based on polymethylmethacrylate modified with 10, 20 and 30 % wt. of crosslinked polyurethane have been studied. It has been shown that the formation of polymethylmethacrylate-polyurethane semi-IPNs accompanied by phase separation that occurs in two stages: on the first stage the mechanism of nucleation and growth takes place, and the second stage is superposition of mechanisms of nucleation and spinodal decomposition. As a result the polymer system with two phases and quasicompatible interfacial region is formed. The increase of polyurethane content leads to acceleration of the phase separation process in the system. At that the domains with larger size are formed and the fraction of the interfacial region depending on the content of polyurethane is growing. An increase of the fraction of interfacial region in polymethylmethacrylate modified by crosslinked polyurethane is accompanied by increasing of elongation and can enhance its impact resistance.
Keywords: impact-resistant polymethylmethacrylate, kinetics, phase morphology, interfacial region, viscoelastic properties.
Література
1. Нильсен Л. Механические свойства полимеров и их композиций. – М.: Химия, 1978. – 312 с.
2. Michler G.H. High-impact rubber-modified polymers. In: Electron microscopy of polymers. – Berlin: Springer, 2008. – P. 351–371.
3. Hur T., Manson J.A., Hertzberg R.W., Sperling L.H. Fatigue behavior of acrylic interpenetrating polymer networks. II // J. Appl. Polym. Sci. – 1990. – 39, № 9. – P. 1933–1947.
4. Heim Ph., Wrotecki C., Avenel M., Gaillard P. High impact cast sheets of poly(methyl methacrylate) with low levels of polyurethane // Polymer. – 1993. – 34, № 8. – Р. 1653–1660.
5. Шумский В.Ф, Косянчук Л.Ф., Тодосийчук Т.Т., Гетманчук И.П., Бабич О.В., Гомза Ю.П. Влияние нанонаполнителя на реокинетику формирующейся in situ смеси полиметилметакрилат – полиуретан // Доп. НАН України. – 2011. – № 2. – С. 137–143.
6. Шумский В.Ф, Косянчук Л.Ф., Игнатова И.П., Гетманчук И.П., Грищенко В.К., Бусько Н.А., Антонен-ко О.И., Бабич О.В. Реокинетика формирования in situ смеси полиметилметакрилат – полиуретан в присутствии олигомерного инициатора полимеризации. Морфология и механические свойства конечных продуктов реакции // Высокомолекуляр. соединения. Сер. Б. – 2015. – 57, № 5. – С. ????
7. Sperling L.H. Interpenetrating polymer networks and related materials. – New York, London: Plenum Press, 1981. – 260 p.
8. Lipatov Yu.S., Alekseeva T.T. Phase-separated interpenetrating polymer networks // Adv. Polym. Sci. – 2007. – 208. – P. 1–234.
9. Ignatova T.D., Kosyanchuk L.F., Todosiychuk T.T., Nesterov A.E. Reaction-induced phase separation and structure formation in polymer blends // Composite Interfaces. – 2011. – 18, № 3. – P. 185–236.
10. Yamanaka K., Takagi Y., Inoue T. Reaction-induced phase separation in rubber-modified epoxy resins // Polymer. – 1989. – 30, № 10. – Р. 1839–1844.
11. Yamanaka K., Inoue T. Structure development in epoxy resin modified with poly(ether sulphone) // Polymer. – 1989. – 30, № 4. – Р. 662–667.