2016 (1) 6
https://doi.org/10.15407/polymerj.38.01.047
The features of the kinetics of formation of organic-inorganic interpenetrating polymer networks (OI IPNs) based on crosslinked polyurethane (PU), polyhydroxyethylmethacrylate (PGEMA) and polititaniumoxide (–TiO2–)n, obtained by sol-gel method
T.V. Tsebrienko, Т.Т. Alekseeva
Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shоse, Kyiv, 02160, Ukraine
Polym. J., 2016, 38, no. 1: 47-55.
Section: Structure and properties.
Language: Russian.
Abstract:
The features of the kinetics of formation of organic-inorganic interpenetrating polymer networks (OI IPNs) based on crosslinked polyurethane (PU), polyhydroxyethylmethacrylate (PGEMA) and polititaniumoxide (-TiO2-)n, obtained by sol-gel method, have been investigated. OI IPNs were obtained by variation the ratio of components PU/PGEMA, content (-TiO2-)n and the molar ratio of titanium isopropoxide (Ti(OPri)4) to the water. It was established that the reaction of formation of urethane in IPNs catalyzed by polititaniumoxide, which effects on the rate of formation of PGEMA-component. It was shown that the rate of formation of PGEMA-component increased when content of (-TiO2-)n in OI IPNs reduced, regardless of the molar ratio of Ti(OPri)4/H2O. It is associated with appearance of the “cell” effect. It was found that the content of PU component effects on the rate of formation PGEMA-component. The increase of PU component in the OI IPNs composition, leads to slow reaction of radical polymerization due to steric hindrance and gain the “cell” effect.
Key words: sol-gel method, titanium isopropoxide, organic-inorganic interpenetrating polymer networks, polititaniumoxide, kinetics.
Литература
1. Chen X., Mao S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modification, and Application // Chem. Rev. – 2007. – 107. – P. 2891-2959.
2. da Silva V.D.,dos Santos L.M., Suba S.M. Synthesis and characterization of polyurethane/titanium dioxide nanocomposits obtained by in situ polymerization // Polym. Bull. – 2013. – 70. – P. 1819-1833.
3. Chen Y., Yuan T., Zhang Q., Fan H. Asymmetric Polyurethane Membrane with In situ-Generated Nano-TiO2 as Wound Dressing // J. Appl. Polym. Sci. – 2010. – 119. –P. 1532-1541.
4. Ao C. H., Lee S. C., Yu J. C. Photocatalyst TiO2 supported on glass fiber for indoor air purification: effect of NO on the photodegradation of CO and NO2 // J. Photochem. Photobiol. – 2003. – 156. – P. 171-177.
5. Nakata K., Fujishimaa A., Photochem J. TiO2 photocatalysis: Design and applications // Photobiol. – 2012 – 13. – P.169-189.
6. Luo X., Zha C., Luther-Davies B. Photosensitivity of titania-doped hybrid polymer prepared by an anhydrous sol–gel process // Opt. Mater. – 2004. – 27. – P.1461-1466.
7. Kuznetsov A., Kameneva O., Alexandrov A., Bityurin N., Marteau Ph. Light-induced charge separation and storage in titanium oxide gels // J. Phys. Chem. Part B. – 2005. – 42. – P.19767.
8. Meen TH, Water W., Chen WR., Chao SM. Application of TiO nano-particles on the electrode of dye-sensitized solar cells // J. Phys. Chem. Solids. – 2009. – 70. – P. 472-476.
9. Garzella C., Comini E., Tempesti E., Frigeri C., Sberveglieri G. TiO2 thin films a novel sol-gel processing for gas sensor applications // Sensor and Actuators Part B. – 2000. – 68. – P. 189-196.
10. Lipatov Y.S., Alekseeva T.T. Phase-separated interpenetrating polymer networks. – Berlin, Heidelberg, New York: Springer, Advаnces in Polymer Science, 2007.– 208. – 234 p.
11. Липатов Ю.С., Алексеева Т.Т., Росовицкий В.Ф., Бабкина Н.В. Влияние кинетики формирования взаимопроникающих полимерных сеток на их микрофазовое разделение // Высокомол. соед. – 1993. – 35, № 6. – С. 652-657.
12. Мартынюк И.С., Алексеева Т.Т. Кинетические закономерности образования органо-неорганических ВПС на основе сетчатого полиуретана и Ti-содержащего сополимера // Полімер. журн. – 2013. – 35, № ?. – С. 171-178.
13. Мартынюк И.С. Особливості формування структури та властивості органо-неорганічних взаємопроникних полімерних сіток на основі поліуретану та Ti-вмісного кополімеру: автореф. дис. … канд. хім. наук. – К.: Принт – Центр, 2014. – 22 с.
14. Помогайло А.Д. Гибридные полимер-неорганические нанокомпозиты // Успехи химии. – 2000. – 69. – С. 60.
15. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides // Prog. Solid state Chem. – 1988. – 18. – P. 259-341.
16. Brinker C.J., Scherer G.W. Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing. – New York: Academic Press Inc, 1990. – P. 908.
17. Bonilla G., Martinez M., Mendoza A. M., Widmaier J.-M. Ternary interpenetrating networks of polyurethane-poly(methyl methacrylate) – silica. Preparation by sol-gel process and characterization of films // Europ. Polymer J. – 2006. – 42. – P. 2977- 2986.
18. Keshmiri M., Mohseni M., Troczynski T. Development of novel TiO2 sol-gel – derived composite and its photocatalytic activities for trichloroethylene oxidation // Applied Catalysis B: Environmental. – 2004. – 53. – P. 209-219.
19. Widmaier J.-M., Bonilla G. In situ synthesis of optically transparent interpenetrating organic/inorganic networks // Polymers for Advanced Technology. – 2006. – 17, No. 9-10. – P. 634-640.
20. Kaddami H., Gerard J.F., Hajjl P. Silica-filled poly(HEMA) from Hema/grafted SiO2 nanoparticles: polymerization kinetics and rheological changes // J. Appl. Polym. Sci. – 1999. – 73. – P. 2701-2713.
21. Kaddami H., Pascault J.P., Gerard J.F. Influence of the initiation rate on the polymerization kinetics of hydroxyl ethyl methacrylate (HEMA) filled with HEMA-grafted silica preformed nanoparticles // Polym. Eng. Sci. – 2004. – 44. – P. 1231-1239.
22. Филд Р., Коув П. Органическая химия титана. – Москва: Мир, 1969. – С. 261.
23. Salomatina E.V., Biturin N.M., Gulenova M.V., Gracheva T.A. Synthesis, structure, and properties of organic-inorganic nanocomposites containing poly(titanium oxide) // J. Mater. Chem. C. – 2013. – 1, № 39. – P. 6375-6385.
24. Дехант И., Данц Р., Киммер В. Инфракрасная спектроскопия полимеров. – М.: Химия, 1976. – С. 470.
25. Тарасевич Б.Н. ИК-спектры основных классов органических соединений (справочные материалы). – М.: изд-во МГУ, 2012. – С. 54.
26. Zhoи H., Chen Y. Fan H. Water vapor permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity // J. Appl. Polym. Sci. – 2008. – 109. – P. 3002-3007.
27. Zhang J., Wang B. New observations on the optical properties of PPV/ TiO2 nanocomposites // Polymer. – 2001. – 42. – P. 3697-3702.
28. Алексєєва Т.Т., Менжерес Г.Я., Мартинюк І.С. Спектральні дослідження формування взаємопроникних полімерних сіток на основі сітчастого поліуретану та органо-неорганічного кополімеру // Вопр. химии и хим. технологии. – 2012. – 3. – С. 54-60.
29. Гладышев Г.П., Попов В.А. Радикальная полимеризация при глубоких степенях превращения. – М.: Наука, 1974. – 242 с.
30. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. – М.: Химия, 200. – 672 с.