2016 (2) 1
https://doi.org/10.15407/polymerj.39.04.260
Polymeric and composite materials for proton conductive membranes of fuel cells
I.Yu. Yevchuk1, O.I. Demchyna1, Kh.V. Demydova1, H.V. Romaniuk2, Z.M. Koval2
1Department of Physico-Chemistry of Fossil Fuels
L.M. Lytvynenko Institute of Physico-Organic Chemistry and Coal Chemistry
3а, Naukova str., Lviv, 79053, Ukraine; e-mail: demchynaoksana@ukr.net
2National Lviv Polytechnic University
12, S. Bandera str., Lviv, 79013, Ukraine; e-mail: groman@polynet.lviv.ua
Polym. J., 2016, 38, no. 2: 107-114.
Section: Review.
Language: Ukrainian.
Abstract:
Сurrent state of research in the development of materials for proton conductive membrane of fuel cells has been analysed. The urgency of research in this area due to the necessity of a wider introduction of energy saving technologies in different areas of the economy caused by the problems of exhaustion of natural energy resources, as well as increasing of the environmental standards has been underlined. A review of the main strategies for creation of polymeric materials having proton-conducting properties, namely: synthesis and modification of the Nafion-type fluorinated polymer membranes, obtaining of polycondensation materials of different composition, synthesis of composite and hybrid materials, has been made. New approaches to creation of alternative nonfluorinated materials for polymer membranes, including synthesis of hybrid organic-inorganic composites, use of block copolymers and ionic liquids, have been considered.
Key words: fuel cell, proton conductive membrane, block copolymer, organic-inorganic composite, ionic liquid.
Література
1. Мальцева Т.В. Неорганические протонпроводящие наноматериалы: перспективы применения в мембранных топливных элементах // Наносистеми, наноматеріали, нанотехнології. – 2004. – 2, № 3. – С. 875–894.
2. Иванчев С.С., Мякин С.В. Полимерные мембраны для топливных элементов: получение, структура, модифицирование, свойства // Успехи химии. – 2010. – 79, № 2. – С. 117–134.
3. Sossina M. Haile. Fuel cell materials and components // Acta Materialia. – 2003. – V. 51. – P. 5981–6000.
4. Zaidi S.M.J., Matsuura T. Polymer Membranes for Fuel Cells // Springer Science + Business Media, LLC. – 2009. – P. 431.
5. Hickner M.A., Ghassemi H., Yu Seung Kiet Alternative Polymer Systems for Proton Exchange Membranes (PEMs) // Chem. Rev. – 2004. – V. 104. – P. 4587–4612.
6. Smitha B., Sridhar S., Khan A.A. Solid polymer electrolyte membranes for fuel cell applications – a review // J. of Membrane Sci. – 2005. – V. 259. – P. 10–26.
7. Chikh L., Delhorbe V., Fichet O. Review. (Semi-)Interpenetrating polymer networks as fuel cell membranes // J. of Membrane Sci. – 2011. – V. 368. – P. 1–17.
8. Добровольский Ю.А., Писарева А.В., Ленова Л.С. Новые протонпроводящие мембраны для топливных элементов и газовых сенсоров // Альтернативная энергетика и экология. – 2004. – 12, № 2. – С. 36–41.
9. Kreuer K.D., Paddison S.J., Spohr E. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology // Chemical reviews. – 2004. – 104, No 10. – P. 4637–4678.
10. Kreuer K.D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells // J. of Membrane Sci. – 2001. – V. 185. – P. 29–39.
11. Rice M.J., Roth W.L. Ionic transport in super ionic conductors: a theoretical model // J. of Solid State Chem. – 1972. – V. 4. – P. 294–310.
12. Wootthikanokkhan J., Seeponkai N. Methanol permeability and properties of DMFC membranes based on sulphonated PEEK/PVDF blends // J. Appl. Polymer Sci. – 2006. – V. 102. – P. 5941–5947.
13. Kerre J., Ullrih A., Hein M. Cross-linked polyaryl blend membranes for polymer electrolyte fuel cells // Fuel Cells. – 2004. – 4, No 1. – P. 105–112.
14. Shams Es-haghi S., Leonov А.І., Weiss R.A. Deconstructing the double-network hydrogels: the importance of grafted chains for achieving toughness // Macromolecules. – 2014. – V. 47. – P. 4769– 4777.
15. Ugur M.H., Kayaman-Apohan N., Avci D. Phosphoric acid functional UV-cured proton conducting polymer membranes for fuel cells // Ionics (online). – 15 July 2015. – P. 1–11.
16. Kim J., Kim B., Jung B. Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers // Membrane Sci. – 2002. – V. 207. – P. 129–137.
17. Storey R.F., Baugh D.W. Poly(styrene-b-isobutylene-b-styrene) block copolymers and ionomers therefrom: morphology as determined by small-angle X-ray scattering and transmission electron microscopy // Polymer. – 2000. – V. 41. – P. 3205–3211.
18. Serpico J.M., Ehrenberg S.G., Fontanella J.J. Transport and Structural Studies of Sulfonated Styrene-Ethylene Copolymer Membranes // Macromolecules. – 2002. – V. 35. – P. 5916–5921.
19. Cornet N., Diat O., Gebel G. Sulfonated polyimide membranes: a new type of ion-conducting membrane for electrochemical applications // New Mater. Electrochem. Syst. – 2000. – V. 3. – P. 33–42.
20. Genies C., Mercier R., Sillion B Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes // Polymer. – 2001. – V. 42. – P. 359–373.
21. Vallejo E., Pourceelly G., Gavach C. Sulfonated Polyimides as Proton Conductor Exchange Membranes. Physicochemical Properties and Separation H+/Mz+ by Electrodialysis Comparison with a Perfluorosulfonic Membrane // J. Membr. Sci. – 1999. – V. 160. – P. 127–137.
22. Meier-Haack J., Taeger A., Vogel C. Membranes from sulfonated block copolymers for use in fuel cells // Separation and Purification Technology. – 2005. – V. 41. – P. 207–220.
23. Do Kyoung Lee, Kyung Ju Lee, Jong Woo Kim Synthesis and Characterization of crosslinked triblock copolymers for fuel cells // Desalination. – 2008. – V. 233. – P. 104–112.
24. Ahmad H., Kamarudin S.K., Hasran U.A., Daud W.R.W. Rewiew. Overview of hybrid membranes for direct-methanol fuel-cell applications // International j. of hydrogen energy. – 2010. – V. 35. – P. 2160–2175.
25. Laberty-Robert C., K. Valle K., Pereira F., Sanchez C. Design and properties of functional hybrid organic-inorganic membranes for fuel cells // Chem. Soc. Rev. – 2011. – V. 40. – P. 961–1005.
26. Nagarale R.K., Shina Woonsup, Pramod K. Singhb. Progress in ionic organic-inorganic composite membranes for fuel cell applications // Polym. Chem. – 2010. – V. 1. – P. 388–408.
27. Mauritz K.A. Organic-inorganic hybrid materials: Perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides // Mater. Sci. Eng. – 1998. – V. C 6 (2 – 3). – P. 121–133.
28. Sanchez C., Rozes L., Ribot F. Laberty-Robert C., Grosso D., Sassoye C., Boissiere C., Nicole L. “Chimie douce”: A land of opportunities for the designed construction of functional inorganic and hybrid organic-inorganic nanomaterials // C. R. Chimie. – 2010. – V. 13. – P. 3–39.
29. Hickner M.A., Ghassemi H., Kim Y.S. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) // Chem. Rev. – 2004. – V. 104. – P. 4587–4612.
30. Patent 5523181 US Stonehart P., Watanabe M. – Publ. June 4, 1996.
31. Adjemian V.T., Lee S.J., Srinivasan S. Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80–140 °C // J. Electrochem. Sci. – 2002. – V. 149. – P. 256–261.
32. Jung D.H., Cho S.Y., Peck D.H. Performance evaluation of a Nafion/silicon oxide hybrid membrane for direct methanol fuel cell // J. Power Sources. – 2002. – V. 106. – P. 173–177.
33. Tatsumisago M., Honjo H., Sakai Y. Proton-conducting silica-gel films doped with a variety of electrolytes // Solid State Ionics. – 1994. – V. 74. – P. 105–108.
34. Fu R.-Q., Woo J.-J., Seo S.-J. Covalent organic/inorganic hybrid proton-conductive membrane with semi-interpenetrating polymer network: preparation and characterizations // J. Power Sources. – 2008. – V. 179. – P. 458–466.
35. Gurtekin M., Kayaman-Apohan N., Kahraman M.V., Menceloglu Y., Gungor A. UV curable sulfonated hybrid materials and their performance as proton-exchange membranes // Reactive & Functional Polymers. – 2009. – V. 69. – P. 698–704.
36. Мамуня Є.П., Юрженко М.В., Лебедєв Є.В. Електроактивні полімерні матеріали. – Київ. – 2013. – 397 с.
37. Gizli N., Cinarli S., Demircioglu M. Characterization of poly(vinylchloride) (PVC) based cation exchange membranes prepared with ionic liquid // Separation and Purification Technology. – 2012. – V. 97. – P. 96–107.
38. Ogihara W., Bangyeekhan B., Ohno H. Preparation and characterization of ionic liquid copolymers for lithium ion conduction // Proceedings of 2004 Joint International Meeting, Honolulu, Hawaii. – October 3–8, 2004. – Abstr. 2440.
39. Carlin R.T., Fuller J., Breda A.C. Electrochemical Properties of Ionic Liquid-Polymer Gel Electrolytes // Proceeding 193rd Meeting of the Electrochem Soc., San Diego, CA. – May 3–8, 1998. – Abstr. 1023.
40. Chervakov O.V., Burmistr M.V., Sverdlikovs’ka O.S. Ionic liquids for promising ion-conducting polymer materials of electrochemical devices // Полімер. журн. – 2008. – 30, N 1. – С. 5–13.