2016 (2) 8

https://doi.org/10.15407/polymerj.38.02.158

The kinetics of the formation of organic-inorganic interpenetrating polymer networks in the presence of poly(titanium oxide) was obtained by sol-gel method

 

T.V. Tsebrienko, Т.Т. Alekseeva

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2016, 38, no. 2: 158-167.

 

Section: Synthesis polymers.

 

Language: Russian.

 

Abstract:

The features of the kinetics of the formation of organic-inorganic interpenetrating polymer network (OI IPNs) based on crosslinked polyurethane (PU) and polyhydroxyethylmethacrylate (PHEMA) in the presence of poly(titanium oxide) (–TiO2–)n, was obtained by sol-gel method with variation content of (–TiO2–)n and the molar ratio of titanium isopropoxide (Ti(OPri)4) to the water was 1:2 have been studied by calorimetric method. Organic-inorganic interpenetrating polymer networks were obtained with a ratio PU/PHEMA 30/70 % wt. It was shown that the rate of the formation of PHEMA-component decrease when content of poly(titanium oxide) in OI IPNs increased. It is associated with appearance of the “cell” effect due to the grafting poly(titanium oxide) to hydroxyethylmethacrylate (HEMA). It was found that the rate of polymerization of HEMA in the presence of poly(titanium oxide) which was obtained in the medium of polypropylene glycol (POPG) significantly higher then the rate of the formation PHEMA when poly(titanium oxide) was obtained in HEMA. The rate of the formation of PHEMA depends on the features of incorporation (–TiO2–)n in the organic matrix.

 

Key words: hybrid materials, kinetics, radical polymerization, “cell” effect, conversion degree.

 

 

Литература

1. Yet J.-M., Weng C.-J., Huang K.-Y. Thermal and Optical Properties of PMMA–Titania Hybrid Materials Prepared by Sol-Gel Approach with HEMA as Coupling Agent // J. Appl. Polym. Sci. – 2004. – 94. –P. 400–405.
2. Nussbaumer R. J., Caseri W. R., Smith P. Polymer-TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials // Macromol. Mater. Eng. – 2003. – 288. – P. 44-49.
3. Chiu W.-M., Yang C.-F., Chao Y.-H. Synthesis and Characterization of Titanium Dioxide Optical Film by Sol-Gel Process // J. Appl. Polym. Sci. – 2007. – 103. – P. 2271-2280.
4. Douce J., Boilot J.-P., Biteau J. Effect of filler size and surface condition of nano- sized silica particles in polysiloxane coatings // Thin Solid Films. – 2004. – 466. – P. 114-122.
5. Ke Z., Yongping B. Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization // Materials Letters. – 2005. – 59. – P. 3348–3351.
6. Wang Z.F., Wang B., Qi N., Zhang H.F. Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons // Polymer. – 2005. – 46. – P. 719–724.
7. Deng J., Ding X., Zhang W., Peng Y. Carbon nanotube–polyaniline hybrid materials // Europ. Polymer J. – 2002. – 38. – P. 2497–2501.
8. Помогайло А.Д. Гибридные полимер-неорганические композиты // Успехи химии. – 2000. – 69. – Р. 60 – 89.
9. Wang J., Ni X. Interfacial Structure of Poly(methyl methacrylate)/TiO2 Nanocomposites Prepared Through Photocatalytic Polymerization // J. Appl. Polym. Sci. – 2007. – 108. – P. 3552–3558.
10. Bach L.G., Islam Md. R., Seo S.Y., Lim K.T. A Novel Route for the Synthesis of Poly(2-hydroxyethyl methacrylate) Grafted TiO2 Nanoparticles via Surface Thiol-Lactam Initiated Radical Polymerization // J. Appl. Polym. Sci. – 2012. –P. 1 – 9.
11. Kuznetsova A. I., Kameneva O., Rozes L., Sanchez C., Bityurin N. Extinction of photo-induced Ti3+ centres in titanium oxide gels and gel-based oxo-PHEMA hybrids // Chemical Physics Letters. – 2006. – 429. – P. 523 – 527.
12. Каменева О.В., Кузнецов А. И., Смирнова Л. А., Розес Л. Новые гибридные органо-неорганические материалы на основе полититаноксидного геля с эффективным УФ-индуцированным разделением заряда // ДОКЛ. АН РФ. – 2006. – 407. – С. 29-31.
13. Su H.-W., Chen W.-C. High refractive index polyimide-nanocrystalline-titania hybrid optical materials // J. Mater. Chem. C. – 2008. – 18. – P. 1139–1145.
14. Ravirajan P., Bradley D.D.C., Nelson J., Haque S.A., Durrant J.R. Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector // Appl. Phys. Lett. – 2005. – 86. – P. 1-3.
15. Gaya U.I., Abdullah A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems // J. Photochem. Photobiol. C. – 2008. – 9. – P. 1 -12.
16. Moradi S. Azar P.A., Farshid S.R., Khorrami S.A. Effect of Additives on Characterization and Photocatalic Activity of TiO2/ZnO Nanocomposite Prepared via Sol-Gel Process // Intern. J. Chem. Eng. – 2012. – 2012. – P. 1 – 5.
17. Bityurin N., Znaidi L., Kanaev A. Laser-induced absorption in titanium oxide based gels // Chem. Physics Letters. – 2003. – 374.- P. 95 -99.
18. Kameneva O., Kuznestov A. I., Smirnova L. A., Ro- zes L., Sanchez C. New photoactive hybrid organic–inorganic materials based on titanium-oxo-PHEMA nanocomposites exhibiting mixed valence properties // J. Mater. Chem. C. – 2005. – 15. – P. 3380 –3383.
19. Salomatina E.V., Biturin N.M., Gulenova M.V., Gracheva T.A. Synthesis, structure, and properties of organic-inorganic nanocomposites containing poly(titanium oxide) // J. Mater. Chem. C. – 2013. – 1, № 39. – P. 6375-6385.
20. Цебриенко Т.В., Алексеева Т.Т. Особенности кинетики формирования взаимопроникающих полимерных сеток на основе полиуретана, полигидроксиэтилметакрилата и полититаноксида, полученного золь-гель методом // Полимер. журн. – 2016. –38, № 1. – С. 47-55.
21. Brinker C.J., Scherer G.W. Sol-Gel Science. – New York: Academic Press, 1990. – P. 908.
22. Мартынюк И.С., Алексеева Т.Т. Кинетические закономерности образования органо-неорганических ВПС на основе сетчатого полиуретана и Ti-содержащего сополимера // Полімер. журн. – 2013. – 35, № 2 – С. 171-178.
23. Розенберг Б.А., Бойко Г.Н., Богданова Л.М. Реакции межцепного обмена // Высокомолекуляр. соединения. Сер. А. – 2003. – 45. – С. 1454-1461.
24. Perova T.S., Vij J.K., Xu H. Fourier transform infrared study of poly (2-hydroxyethyl methacrylate) PHEMA // Colloid & Polymer Sci. – 1997. – 275. – P. 323-332.
25. Алексєєва Т.Т., Менжерес Г.Я., Мартинюк І.С. Спектральні дослідження формування взаємопроникних полімерних сіток на основі сітчастого поліуретану та органо-неорганічного кополімеру // Вопр. химии и хим. технологии. – 2012. – 3. – С. 54-55.
26. Chatterjee A. Properties Improvement of PMMA Using Nano TiO2 // J. Appl. Polym. Sci. – 2010. – 118.– P. 2890-2897.
27. Zhon H., Chen Y. Fan H. Water vapor permeability of the polyurethane/TiO2 nanohybrid membrane with temperature sensitivity // J. Appl. Polym. Sci. – 2008. – 109. – P. 3002-3007.
28. Kaddami H., Gerard J.F., Hajjl P. Silica-filled poly(HEMA) from HEMA/grafted SiO2 nanoparticles: polymerization kinetics and rheological changes // J. Appl. Polym. Sci. – 1999. – 73. – P. 2701-2713.
29. Kaddami H., Pascault J.P., Gerard J.F. Influence of the initiation rate on the polymerization kinetics of hydroxyl ethyl methacrylate (HEMA) filled with HEMA-grafted silica preformed nanoparticles // Polym. Eng. Sci. – 2004. – 44
30. Гладышев Г.П., Попов В.А. Радикальная полимеризация при глубоких степенях превращения. – М.: Наука, 1974. – 242 с.