2017 (4) 1
https://doi.org/10.15407/polymerj.39.04.219
Influence of the carbon micro and nanofillers on the electrical and thermal properties of the segregated polymer composites
O.V. Maruzhenko1,2, Ye.P. Mamunya1, G. Boiteux2, S. Pruvost3, S. Pusz4, U. Szeluga4, B. Kumanek4
1Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
2Universite de Lyon, Universite Lyon 1, Ingenierie des Materiaux Polymeres
UMR CNRS 5223, 69 622 Villeurbanne Cedex, France
3Universite de Lyon, INSA Lyon, Ingenierie des Materiaux Polymeres
UMR CNRS 5223, 69 621 Villeurbanne Cedex, France
4Centre of Polymer and Carbon Materials, Polish Academy of Sciences
34, Marii Curie-Skіodowskiej, 41-819 Zabrze, Poland
Polym. J., 2017, 39, № 4: 219-226.
Section: Structure and properties.
Language: Russian.
Abstract:
There were studied electrical and thermal properties of polymer composites with carbon micro- and nano fillers with statistical and segregated filler distribution in polymer matrix. Samples were prepared by hot compacting method, as a filler there were used thermally treated anthracite (A), graphene (Gr) and hybrid filler (Gr-A). There was found that systems with segregated filler distribution has significantly lower percolation threshold comparing to the systems with random distribution. Also, great impact on electrical conductivity has filler sizes – system with nanofiller (Gr) showed lowest percolation threshold (0,21 % vol.) and with microfiller (A) – highest (2,95 % vol.). Synergistic effect caused by nano- and microfillers combination was achieved for hybrid systems Gr-A. Thermomechanical analysis showed significant growth of mechanical losses tangent in the area above melting temperature after hitting critical concentration value.
Key words: polymer composites, carbon micro- and nanofillers, segregated systems, electrical conductivity, mechanical losses.
References
1. Friedrich K., Breuer U. Multifunctionality of polymer composites. Challenges and new solutions. USA: Elsevier Inc. 2015, 964 p.
2. Advances in nanocomposites – synthesis, characterization and industrial applications. Reddy B., ed., Rijeka, Croatia: InTech; 2011. https://doi.org/10.5772/604
3. Metal, ceramic and polymeric composites for various uses. J. Cuppoletti, ed.: InTech, Rijeka, Croatia, 2011. https://doi.org/10.5772/1428
4. Carbon nanotubes – polymer nanocomposites. S. Yellampalli, ed., InTech, Rijeka, Croatia, 2011. https://doi.org/10.5772/979
5. The new frontiers of organic and composite nanotechnology. V. Erokhin, M.K. Ram, O. Yavuz, eds., Amsterdam, Netherlands: Elsevier, 2008.
6. Conductive polymers and plastics in industrial applications. L. Rupprecht, ed., NY, USA: William Andrew Inc., 1999.
7. Kusy R. P. Influence of particle size ratio on the continuity of aggregates. J. Appl. Phys., 1977, 48: 5301–5305. https://doi.org/10.1063/1.323560
8. Gong T., Peng S. P., Bao R. Y., Yang W., Xie B. H., Yang M. B. Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure. Compos. Part B Eng., 2016, 99: 348–357. https://doi.org/10.1016/j.compositesb.2016.06.031
9. George N., Bipinbal P. K., Bhadran B., Mathiazha- gan A., Joseph R. Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: A novel technique for multifunctional properties. Polymer, 2017, 112: 264–277. https://doi.org/10.1016/j.polymer.2017.01.082
10. Yoo T. J., Hwang E. B., Jeong Y. G., Thermal and electrical properties of poly(phenylene sulfide)/carbon nanotube nanocomposite films with a segregated structure. Compos. Part A Appl. Sci. Manuf., 2016, 91: 77–84. https://doi.org/10.1016/j.compositesa.2016.09.022
11. Ren P. G., Hou S. Y., Ren F., Zhang Z. P., Sun Z. F., Xu L. The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN+MWCNT) hybrid composites with segregated structure. Compos. Part A Appl. Sci. Manuf., 2016, 90: 13–21. https://doi.org/10.1016/j.compositesa.2016.06.019
12. Pusz S., Szeluga U., Nagel B., Czajkowska S., Galina H., Strzezik J. The influence of structural order of anthracite fillers on the curing behavior, morphology, and dynamic mechanical thermal properties of epoxy composites. Polym. Compos., 2014, 36: 336–347. https://doi.org/10.1002/pc.22948
13. Mamunya Ye.P., Iurzhenko M.V., Lebedev E.V., Levchenko V.V., Chervakov O.V., Matkovska O.K., Sverdlikovska O.S. Electroactive polymer materials, Kyiv: Alpha-reklama, 2013: 398 (in Ukrainian).
14. Stauffer D., Aharony A., Introduction to Percolation Theory, Computer, 1994, 1, no. 4: 192.
15. Lebovka N., Lisunova M., Mamunya Y. P., Vygornitskii N. Scaling in percolation behaviour in conductive–insulating composites with particles of different size. J. Phys. D. Appl. Phys., 2006, 39, no. 10: 2264–2271. https://doi.org/10.1088/0022-3727/39/10/040
16. Kogut P. M., Straley J. P. Distribution-induced non-universality of the percolation conductivity exponents. J. Phys. C Solid State Phys., 1979, 12, no. 11: 2151. https://doi.org/10.1088/0022-3719/12/11/023
17. Mamunya Y., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol., 2008, 68, no. 9: 1981–1988. https://doi.org/10.1016/j.compscitech.2007.11.014
18. McLachlan D. S., Chiteme C., Heiss W. D., Wu J. Fitting the DC conductivity and first order AC conductivity results for continuum percolation media, using percolation theory and a single phenomenological equation. Phys. B Condens. Matter, 2003, 338, no. 1–4: 261–265. https://doi.org/10.1016/j.physb.2003.08.003
19. Levchenko V., Mamunya Y., Boiteux G., Lebovka M., Alcouffe P., Seytre G., Lebedev E., Influence of organo-clay on electrical and mechanical properties of PP/MWCNT/OC nanocomposites, Eur. Polym. J., 2011, 47, no. 7: 1351–1360. https://doi.org/10.1016/j.eurpolymj.2011.03.012
20. Mamunya E. P., Davidenko V. V., Lebedev E. V. Percolation conductivity of polymer composites filled with dispersed conductive filler. Polym. Compos., 1995, 16, no. 4: 319–324. https://doi.org/10.1002/pc.750160409
21. Ma P. C., Liu M. Y., Zhang H., Wang S. Q., Wang R., Wang K., Wong Y. K., Tang B. Z., Hong S. H., Paik K. W., Kim J. K. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl. Mater. Interfaces, 2009, 1, no. 5: 1090–1096. https://doi.org/10.1021/am9000503
22. Al-Saleh M. H. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth. Met., 2015, 209: 41–46. https://doi.org/10.1016/j.synthmet.2015.06.023
23. Chukov D. I., Stepashkin A. A., Maksimkin A. V, Tcherdyntsev V. V, Kaloshkin S. D., Kuskov K. V, Buga-kov V. I. Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Compos. Part B, 2015, 76: 79–88. https://doi.org/10.1016/j.compositesb.2015.02.019
24. Mierczynska A., Mayne-L’Hermite M., Boiteux G., Jeszka J. K. Electrical and mechanical properties of carbon nanotube/ ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J. Appl. Polym. Sci., 2007, 105: 158–168. https://doi.org/10.1002/app.26044
25. Pegoretti M. A., Migliaresi C., Marom G. Relaxation processes in polyethylene ®bre-reinforced polyethylene composites. Compos. Sci. Technol., 2000, 60: 1181–1189. https://doi.org/10.1016/S0266-3538(00)00024-5
26. You Z., Li D. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites. Mater. Lett., 2013, 112: 197–199. https://doi.org/10.1016/j.matlet.2013.09.013
27. Li S., Li X., Deng Q., Li D. Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties. Mater. Des., 2015, 85: 54–59. https://doi.org/10.1016/j.matdes.2015.06.163
28. Kar S., Maji P. K., Bhowmick A. K. Chlorinated polyethylene nanocomposites: Thermal and mechanical behaviour. J. Mater. Sci., 2010, 45: 64–73. https://doi.org/10.1007/s10853-009-3891-z
29. Shrivastava N. K., Suin S., Maiti S., Khatua B. B. An approach to reduce the percolation threshold of MWCNT in ABS/MWCNT nanocomposites through selective distribution of CNT in ABS matrix. RSC Adv., 2014, 4: 84. https://doi.org/10.1039/c4ra01952k
30. Landel R. F., Nielsen L. E. Mechanical Properties of Polymers and Composites, Second Edition. CRC Press, 1993: 580. ISBN 978-082-47-8964-0.