2017 (4) 3

https://doi.org/10.15407/polymerj.39.04.232

NLO materials based on the epoxy matrix of doped 3,5,7,3¢,4¢-pentahydroxiflavone-8-sulfonic acid

 

A.A. Voronkin1, D.O., Mishurov1, 2, O.D. Roshal2, S.I. Bogatyrenko3

 

1National Technical University “Kharkiv Polytechnic Institute”

2, Kyrpychova str., Kharkiv, 61002, Ukraine

2Institute of Chemistry at V.N. Karazin Kharkiv National University

4, Svobody Sqr., Kharkiv, 61022, Ukraine

3School of Physics at V.N. Karazin Kharkiv National University

6, Svoboda Sqr., 61022, Kharkiv, Ukraine

 

Polym. J., 2017, 39, № 4: 232-240.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

Polymeric nonlinear-optical (NLO) materials in the form of thin films were received in this paper. These films were produced by centrifugation on the basis of an epoxy polymer matrix doped with the chromophore 3,5,7,3¢,4¢-pentahydroxiflavone-8-sulfonic acid with different dopant concentrations. This chromophore was synthesized by chemical modifying the natural chromophore 3,5,7,3¢,4¢-pentahydroxyflavone (quercetin) by introducing into its chromones fragment of the acceptor sulfonic group (SO3H) to position C8. The modification of quercetin was carries out in order to increase its dipole moment and, consequently, increase NLO properties, as well as increase solubility in polar solvents. The spectral characteristics of polymeric materials and their NLO properties were studied using optical and IR spectroscopy. The morphology and structural properties of doped polymer films were investigated using scanning electron microscopy and sol-gel analysis. The second quadratic macroscopic susceptibility of the obtained thin polymer films was calculated according to the linear model of solid oriented gas. It is shown that the thermal, morphological, structural and NLO properties of the doped polymer films depend on the concentration of the dopant. It was determined that the introduction of a sulfonic group into a chromophore molecule leads to increase in the NLO properties of polymeric materials. The dependence of the macroscopic values nonlinear-optical properties of doped polymer films on the chromophore concentration has an extreme nature. The maximum value is 1150 pm/V at a concentration of dopant 50 wt. %.

 

Keyword: polymer composites, doped epoxy polymers, chromophores, nonlinear optical properties, sulfoquercetin.

 

References

1. Dalton L.R., Benight S. Theory-guided design of organic electro-optic materials and devices. Polymers, 2011, 3: 1325–1351. https://doi.org/10.3390/polym3031325
2. Gullu O., Turut A. Photovoltaic and electronic properties of quercetin/p-InP solar cells. Sol. Energ. Mater. Sol. Cell, 92, no. 10: 1205–1210.
3. Mishurov D., Voronkin A., Roshal A. Synthesis, molecular structure and optical properties of glycydyl derivatives of quercetin. Struct. Chem., 2016, 27: 285–294. https://doi.org/10.1007/s11224-015-0694-5
4. Sidorenko A.V., Tkachenko I.V., Shekera O.V., Shevchenko V.V. Azo-containing core-fluorinated hydroxyethylatd diamines-monomers for the synthesis of polymers with nonlinear optical properties. Ukr. Polymer J., 2013, 35, no. 3: 304–311 (in Ukrainian).
5. Ma X., Ma F., Zhao Z., Song N., Zhang J. Synthesis and properties of NLO chromophores with fine-tuned gradient electronic structures. J. Mater. Chem., 2009, 19: 2975–2985. https://doi.org/10.1039/b817789a
6. Zhang X., Li M., Shi Z., Zhao L., Jin R., Yi M., Zhang D. Cui Z. The preparation of two-dimensional spindle-type chromophores for second-order nonlinear optical materials. Dyes. Pigments, 2012, 92, no. 3: 982–987. https://doi.org/10.1016/j.dyepig.2011.08.021
7. Li M., Zhang X., Shi Z., Wan Y., Zhao L., Jin R., Yu Y., Yi M., Cui Z. Synthesis of novel two-dimensional spindle-type fluorinated nonlinear optical chromophores. Opt. Mater., 2012, 34, no. 4: 705–710. https://doi.org/10.1016/j.optmat.2011.10.007
8. Li Z., Li P., Dong S., Zhu Z., Li Q., Zeng Q., Li Z., Ye C., Qin J. Controlling nonlinear optical effects of polyurethanes by adjusting isolation spacers through facile postfunctional polymer reactions. Polymer, 2007, 48, no. 13: 3650–3657. https://doi.org/10.1016/j.polymer.2007.04.062
9. Li Z., Li Q., Qin J. Some new design strategies for second-order nonlinear optical polymers and dendrimers. Polymer Chem., 2011, 2: 2723–2740. https://doi.org/10.1039/c1py00205h
10. Mishurov D., Voronkin A., Roshal A., Brovko O. Relaxation behaviour and nonlinear properties of thermally stable polymers based on glycidyl derivatives of quercetin. Opt. Mater., 2016, 57: 179–184. https://doi.org/10.1016/j.optmat.2016.03.047
11. Mishurov D., Voronkin A., Roshal A., Bogatyrenko S. Influence of structure 3,5,7,3′,4’–pentahydroxyflavone-based polymer films on their optical transparency. Opt. Mater., 2017, 64: 179–184. https://doi.org/10.1016/j.optmat.2016.12.004
12. Shevchenko V.V., Sidorenko A.V., Bliznyuk V.N., Tkachenko I.M., Shekera O.V. Azo-containing poly(urethanes) with nonlinear optical properties. Polymer Sci. Part A, 2013, 55, no. 1: 1–31.
13. Doroshenko A.O. Spectral Data Lab software. Kharkiv, 1999.
14. Donald L., Martin. Jr. Crosslink density determinations for polymeric materials. Report no. RK-TrR-70-6, 1970: 31.
15. Guo H., Liu L., Hao X., Niu K., Chou X. Profile measurement system based on Linnik-type interferometric microscope for visible light region and infrared light region. Opt. Laser Technol., 2011, 43: 1184–1189. https://doi.org/10.1016/j.optlastec.2011.03.006
16. Mezzetti A., Protti S., Lapouge C., Cornard J.-P. Protic equilibria as the key factor of quercetin emission in solution. Relevance to biochemical and analytical studies. Phys. Chem. Chem. Phys., 2011, 13: 6858–6864. https://doi.org/10.1039/c0cp00714e
17. Woz’nicka E., Pieniazek E., Zapaia L., Byczyn’ski L., Trojnar I., Kopacz M. New sulfonic derivatives of quercetin as complexingreagents: synthesis, spectral, and thermal characterization. J. Therm. Anal. Calorim., 2015, 120: 351–361. https://doi.org/10.1007/s10973-014-3677-7
18. Kunzler J., Samha L., Zhang R., Samha H. Investigation of the effect of concentration on molecular aggregation of cyanine dyes in aqueous solution. American J. of Undergraduate Research, 2011, 9, no. 4: 1–4.
19. Gullu O., Turut A. Photovoltaic and electronic properties of quercetin/p-InP solar cells. Sol. Energ. Mater. Sol. Cell., 2008, 92, no. 10: 1205–1210. https://doi.org/10.1016/j.solmat.2008.04.009
20. Jeeju P.P., Sajimol A.M., Sreevalsa V.G., Varma S.J., Jayalekshmi S. Size-dependent optical properties of transparent, spin-coated polystyrene/ZnO nanocomposite films. Polym. Int., 2011, 60, no. 8: 1263–1268. https://doi.org/10.1002/pi.3073
21. Paul D.R., Robeson L.M. Polymer nanotechnology: Nanocomposites. Polymer, 2008, 49, no. 15: 3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017
22. Lipson J.E.G., Milner S.T. Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B Condens. Matter., 2009, 72, no. 1: 133–138.
23. Yelmaz Y., Kaya D., Pekcan O. Can the glass transition in bulk polymers be modeled by percolation picture? Eur. Phys. J. E., 2004, 15, no. 1: 19–25. https://doi.org/10.1140/epje/i2003-10156-9
24. Rotrekl J., Matijka L., Kapralkova L., Zhigunov A., Hromadkova J. Kelnar I. Epoxy/PCL nanocomposites: Effect of layered silicate on structure and behavior. Express Polymer Lett., 2012, 6: 975–986. https://doi.org/10.3144/expresspolymlett.2012.103
25. Saadeh H., Gharavi A., Yu D., Yu L. Polyimides with a diazo chromophores exhibiting high thermal stability and large electrooptic coefficients. Macromolecules, 1997, 30: 5403–5407. https://doi.org/10.1021/ma970530o
26. Xie H.-Q., Huang X.-D., Guo J.-S. Synthesis and properties of two kinds of nonlinear optical interpenetrating polymer networks. J. Appl. Polym. Sci., 1996, 60: 537–542. https://doi.org/10.1002/(SICI)1097-4628(19960425)60:4<537::AID-APP7>3.0.CO;2-P
27. Sainudeen Z., Ray P.C. Nonlinear optical properties of ionic NLO chromophores: an attempt to bridge the gap between computation and experiment. Int. J. Quantum Chem., 2005, 105: 348–358. https://doi.org/10.1002/qua.20710