2017 (4) 6

https://doi.org/10.15407/polymerj.39.04.253

Sulfonate aprotic oligomeric ionic liquid of hyperbranched structure

 

A.V. Stryutsky1, O.O. Sobko1, N.S. Klymenko1, M.A. Gumenna1, E.V. Lobko1, A.V. Shevchuk2, V.V. Kravchenko2,      V.V. Shevchenko1

 

1Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

2Litvivenko L.M. Insitute of Physical-Organic Chemistry and Coal Chemistry NAS of Ukraine

50, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2017, 39, № 4: 253-259.

 

Section: Synthesis polymers.

 

Language: Russian.

 

Abstract:

A method for the synthesis of oligomeric aprotic ionic liquid of hyperbranched structure containing sulfonate 1,3-dimethylimidazolium groups was developed. This compound is the first representative of an anionic aprotic hyperbranched oligomeric ionic liquid containing a sulfonate ion-liquid function. Synthesis of the proposed compound was based on complete acylation of hyperbranched oligoesterpolyol of second generation containing 32 terminal hydroxyl groups by 2-sulfobenzoic acid cyclic anhydride and use of the reaction product as potassium salt in the ion-exchange reaction with 1,3-dimethylimidazolium iodide. The structure of the obtained compound was characterized by IR- and 1H NMR spectroscopy. It was shown that the obtained oligomeric ionic liquid is characterized by amorphous structure with glass transition temperature -41,9 °С, thermal stability up to 250 °С and ionic conductivity of 10-8–10-7 S/cm at 100–120 °C under anhydrous conditions. The developed compound is of interest as a highly viscous liquid electrolyte or dopant for the production of polymer electrolytes with an anhydrous conductivity mechanism.

 

Key words: oligomeric ionic liquid, hyperbranched structure, aprotic sulfonate-imidazolium group, structure, ionic conductivity.

 

References

 

1. Xu W., Ledin P.A., Shevchenko V.V., Tsukruk V.V. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s. ACS Appl. Mater. Interfaces., 2015, 7, no. 23: 12570–12596. https://doi.org/10.1021/acsami.5b01833
2. Shevchenko V.V., Stryutsky A.V., Klymenko N.S., Gumenna M.A., Fomenko A.A., Bliznyuk V.N., Trachevsky V.V., Davydenko V.V., Tsukruk V.V. Protic and aprotic anionic oligomeric ionic liquids. Polymer., 2014, 55, no. 16: 3349–3359. https://doi.org/10.1016/j.polymer.2014.04.020
3. Shevchenko V.V., Stryutsky A.V., Klymenko N.S., Gumennaya M.A., Fomenko A.A., Trachevsky V.V., Davydenko V.V., Bliznyuk V.N., Dorokhin A.V. Protic cationic oligomeric ionic liquids of the urethane type. Polym. Sci. Ser. B., 2014, 56, no. 5: 583–592. https://doi.org/10.1134/S156009041405011X
4. Shaplov A.S., Ponkratov D.O., Vlasov P.S., Lozinskaya E.I., Komarova L.I., Malyshkina I.A., Vidal F., Nguyen G.T.M., Armand M., Wandrey C., Vygodskii Y.S. Synthesis and properties of polymeric analogs of ionic liquids. Polym. Sci. Ser. B., 2013, 55, no. 3–4: 122–138. https://doi.org/10.1134/S1560090413030044
5. Korolovych V.F., Ledin P.A., Stryutsky A., Shevchenko V.V., Sobko O., Xu W., Bulavin L.A., Tsukruk V.V. Assembly of Amphiphilic Hyperbranched Polymeric Ionic Liquids in Aqueous Media at Different pH and Ionic Strength. Macromolecules., 2016, 49, no. 22: 8697–8710. https://doi.org/10.1021/acs.macromol.6b01562
6. Zoller U. The cheletrofic fragmentation of hypervalent three-membered thiahetesocyclic intermediates. Tetrahedron., 1988, 44, no. 24: 7413–7426. https://doi.org/10.1016/S0040-4020(01)86237-2
7. Magnusson H., Malmstrom E., Hult A. Structure Buildup in Hyperbranched Polymers from 2,2-Bis(hydroxymethyl)propionic Acid. Macromolecules., 2000, 33, no. 8: 3099–3104. https://doi.org/10.1021/ma991100w
8. Pretsch E., Buhlmann P., Affolter C. Structure determination of organic compounds: tables of spectral data. Structure determination of organic compounds: tables of spectral data. Berlin; New York: Springer, 2000.
9. Kim Y.H., Webster O.W. Hyperbranched polyphenylenes. Macromolecules., 1992, 25, no. 21: 5561–5572. https://doi.org/10.1021/ma00047a001
10. Inoue K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci., 2000, 25, no. 4: 453–571. https://doi.org/10.1016/S0079-6700(00)00011-3
11. Malmstrom E., Johansson M., Hult A. The effect of terminal alkyl chains on hyperbranched polyesters based on 2, 2-bis (hydroxymethyl) propionic acid. Macromol. Chem. Phys., 1996, 197, no. 10: 3199–3207. https://doi.org/10.1002/macp.1996.021971012
12. Malmstrom E., Hult A., Gedde U.W., Liu F., Boyd R.H. Relaxation processes in hyperbranched polyesters: influence of terminal groups. Polymer., 1997, 38, no. 19: 4873–4879. https://doi.org/10.1016/S0032-3861(97)00019-0
13. Wooley K.L., Hawker C.J., Pochan J.M., Frechet J.M.J. Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules., 1993, 26, no. 7: 1514–1519. https://doi.org/10.1021/ma00059a006
14. Kyritsis A., Pissis P., Grammatikakis J. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. Part B. Polym. Phys., 1995, 33, no. 12: 1737–1750. https://doi.org/10.1002/polb.1995.090331205