2018 (1) 1
Ionic liquids and thermosetting polymers: a critical survey
А. Vashchuk1,2, A. Fainleib1, O. Starostenko1, D. Grande2
1Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, 02160 Kyiv, Ukraine
2Institut de Chimie et des Materiaux Paris-Est, UMR 7182 CNRS – Universite Paris-Est Creteil Val-de-Marne
2 rue Henri Dunant, Thiais, 94320, France
Polym. J., 2018, 40, no. 1: 3-15
Section: Review.
Language: English.
Abstract:
Thermosetting polymers are widely used as industrial materials due to good heat resistance, dimensional stability and chemical resistance. Designing novel networks still remains an exciting and emerging field of research. The present paper substantiates the applications of ionic liquids (ILs) for the design of advanced thermoset derivatives. The peculiarities of the curing behavior of resins in the presence of ILs and the main properties of the cured thermosets are analyzed. The utilization of ILs in thermosetting polymers as catalytic agents, plasticizers, electrolytes or porogens is highlighted. Diverse ILs can be incorporated into a polymer matrix to achieve better final properties. To make the review more substantial, basic ideas about ILs are first outlined.
Keywords: thermosets, ionic liquids, catalytic agent, porogen, ionic conducting agent.
References
1. Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 3: 156-164. https://doi.org/10.1039/b103275p |
|
2. Li Y., Zhang C., Zhou Y., Chen Y.D.W. Novel multi-responsive polymer materials: When ionic liquids step in. Eur. Polym. J., 2015, 69: 441-448. https://doi.org/10.1016/j.eurpolymj.2015.05.023 |
|
3. Lu J., Yan F., Texter J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34: 431-448. https://doi.org/10.1016/j.progpolymsci.2008.12.001 |
|
4. Welton T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248: 2459-2477. https://doi.org/10.1016/j.ccr.2004.04.015 |
|
5. Winterton N. Solubilization of polymers by ionic liquid. J. Mater. Chem., 2006, 16: 4281-4293. https://doi.org/10.1039/b610143g |
|
6. Snedden P., Cooper A.I., Scott K., Winterton N. Cross-linked polymer-ionic liquid composite materials. Macromolecules, 2003, 36: 4549-4556. https://doi.org/10.1021/ma021710n |
|
7. Klingshirn M.A., Spear S.K., Subramanian R., Hol-brey J.D., Huddleston J.G., Rogers R.D. J. Gelation of ionic liquids using a cross-linked poly(ethylene glycol) gel matrix. Chem. Mater., 2004, 16: 3091–3097. https://doi.org/10.1021/cm0351792 |
|
8. Susan M.A.B.H., Kaneko T., Noda A., Watanabe M.J. Ion Gels Prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc., 2005, 127: 4976-4983. https://doi.org/10.1021/ja045155b |
|
9. Nakajima H., Ohno H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer, 2005, 46: 11499-11504. https://doi.org/10.1016/j.polymer.2005.10.005 |
|
10. Neouze M.A., Bideau J.L., Gaveau P., Bellayer S., Vioux A. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem. Mater., 2006, 18: 3931-3936. https://doi.org/10.1021/cm060656c |
|
11. Tigelaar D.M., Meador M.A.B., Bennett W.R. Composite electrolytes for lithium batteries: Ionic liquids in APTES cross-linked polymers. Macromolecules, 2007, 40: 4159-4164. https://doi.org/10.1021/ma062804q |
|
12. Xie Y., Zhang Z., Jian T., He J., Han B., Wu T., Ding K. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew. Chem. Int. Ed., 2007, 46: 7255-7258. https://doi.org/10.1002/anie.200701467 |
|
13. Walden P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. St. Petersburg, 1914, 1800: 405–422. | |
14. Chum H.L., Koch V.R., Miller L.L., Osteryoung R.A. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97: 3264-3267. https://doi.org/10.1021/ja00844a081 |
|
15. Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem., 1982, 21: 1263–1264 https://doi.org/10.1021/ic00133a078 |
|
16. Wilkes J.S., Zaworotko M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 965-967. https://doi.org/10.1039/c39920000965 |
|
17. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99: 2071-2083. https://doi.org/10.1021/cr980032t |
|
18. Hallett J.P., Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111: 3508-3576. https://doi.org/10.1021/cr1003248 |
|
19. Marsh K.N., Boxall J.A., Lichtenthaler R. Room temperature ionic liquids and their mixtures – a review. J. Fluid Phase Equilib., 2004, 219: 93-98. https://doi.org/10.1016/j.fluid.2004.02.003 |
|
20. Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37: 123-150. https://doi.org/10.1039/B006677J |
|
21. Rogers R.D., Seddon K.R. Ionic liquids – Solvents of the future? Science, 2003, 302: 792-793. https://doi.org/10.1126/science.1090313 |
|
22. Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nature materials, 2009, 8: 621-629. https://doi.org/10.1038/nmat2448 |
|
23. Livi S., Duchet-Rumeau J., Gerard J.F., Pham T.N. Polymers and ionic liquids: a successful wedding. Macromol. Chem. Phys., 2015, 216: 359–368. https://doi.org/10.1002/macp.201400425 |
|
24. Mecerreyes D. Applications of ionic liquids in polymer science and technology. Berlin: Springer-Verlag, 2015: 392. ISBN: 978-3-662-44903-5. https://doi.org/10.1007/978-3-662-44903-5 |
|
25. Gaune-Escard M., Seddon K.R. Molten salts and ionic liquids: never the twain?, Hoboken: WILEY, 2010: 441. ISBN: 978-0-471-77392-4. | |
26. Wilkes J.S. A short history of ionic liquids – From molten salts to neoteric solvents. Green Chem., 2002, 4: 73-80. https://doi.org/10.1039/b110838g |
|
27. Dupont J. From molten salts to ionic liquids: a «nano» journey. Acc. Chem. Res., 2011, 44: 1223-1231. https://doi.org/10.1021/ar2000937 |
|
28. Gore R.G., Rohitkumar N.G. Safer and greener catalysts – design of high performance, biodegradable and low toxicity ionic liquids. Chapter 19. In book: Ionic liquids – new aspects for the future. Ed. J. Kadokawa. InTech, 2013. ISBN 978-953-51-0937-2. | |
29. Sowmiah S., Srinivasadesikan V., Tseng M.C., Chu Y.H. On the chemical stabilities of ionic liquids. Molecules, 2009, 14: 3780-3813. https://doi.org/10.3390/molecules14093780 |
|
30. Pringle J.M., Golding J., Forsyth C.M., Deacon G.B., Forsyth M., MacFarlane D.R.J. Physical trends and structural features in organic salts of the thiocyanate anion. J. Mater. Chem. 2002, 12: 3475-3480. https://doi.org/10.1039/b208372h |
|
31. Kulkarni P.S., Branco L.C., Crespo J.G., Nunes M.C., Raymondo A., Alfonso C.A.M. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem. Eur. J. 2007, 13: 8478-8488. https://doi.org/10.1002/chem.200700965 |
|
32. Maton C., De Vos N., Stevens C.V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42: 5963-5977. https://doi.org/10.1039/c3cs60071h |
|
33. Seddon K.R., Stark A., Torres M.J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem., 2000, 72: 2275–2287. https://doi.org/10.1351/pac200072122275 |
|
34. Hong K., Zhang H., Mays J.W., Visser A.E., Brazel C.S., Holbrey J.D., Reichert W.M., Rogers R.D. Conventional free radical polymerization in room temperature ionic liquids: a green approach to commodity polymers with practical advantages. Chem. Commun., 2002, 13:1368–1369. https://doi.org/10.1039/b204319j |
|
35. Maksym P., Tarnacka M., Dzienia A., Matuszek K., Chrobok A., Kaminski K., Paluch M. Enhanced polymerization rate and conductivity of ionic liquid-based epoxy resin Macromolecules, 2017, 50: 3262-3272. https://doi.org/10.1021/acs.macromol.6b02749 |
|
36. Kowalczyk K., Spychaj T. Ionic liquids as convenient latent hardeners of epoxy resins. Polimery (Warsaw), 2003, 48: 833-835. | |
37. Soares B.G., Livi S., Duchert-Rumeau J., Gerard J.F. Synthesis and characterization of epoxy/MCDEA networks modified with imidazolium-based ionic liquids. Macromol. Mater. Eng., 2011, 296: 826–834. https://doi.org/10.1002/mame.201000388 |
|
38. Soares B.G., Livi S., Duchet-Rumeau J., Gerard J-F. Preparation of epoxy/MCDEA networks modified with ionic liquids. Polymer, 2012, 53: 60-66. https://doi.org/10.1016/j.polymer.2011.11.043 |
|
39. Silva A.A., Livi S., Netto D.B., Soares B.G., Duchet J., Gerard J.F. New epoxy systems based on ionic liquid. Polymer, 2013, 54: 2123-2129. https://doi.org/10.1016/j.polymer.2013.02.021 |
|
40. Pat. WO 2011142855 A2, PCT/US2011/023739. Room temperature ionic liquids and ionic liquid epoxy adducts as initiators for epoxy systems. Palmese G.R., Rahmathullah M.A.M., Jeyarajasingam A. Publ. 17.11.11. | |
41. Maka H., Spychaj T., Pilawka R. Epoxy resin/ionic liquid systems: the influence of imidazolium cation size and anion type on reactivity and thermomechanical properties. Ind. Eng. Chem. Res., 2012, 51: 5197-5206. https://doi.org/10.1021/ie202321j |
|
42. Rahmathullah A. M., Jeyarajasingam A., Merritt B., VanLandingham M., McKnight S.H., Palmese G.R. Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins. Macromolecules, 2009, 42: 3219-3221. https://doi.org/10.1021/ma802669k |
|
43. Maka H., Spychaj T., Kowalczyk K. Imidazolium and deep eutectic ionic liquids as epoxy resin crosslinkers and graphite nanoplatelets dispersants. J. Appl. Polym. Sci., 2014, 131: 40401 (1-7). | |
44. Maka H., Spychaj T., Zenker M. High performance epoxy composites cured with ionic liquids. J. Ind. Eng. Chem., 2015, 31: 192-198. https://doi.org/10.1016/j.jiec.2015.06.023 |
|
45. Maka H., Spychaj T., Pilawka R. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. eXPRESS Polym. Lett., 2014, 8: 723-732. https://doi.org/10.3144/expresspolymlett.2014.75 |
|
46. Liebner F., Patel I., Ebner G., Becker E., Horix M., Potthast A., Rosenau T. Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung, 2010, 64: 161-166. https://doi.org/10.1515/hf.2010.033 |
|
47. Farkas A., Strohm P.F. Imidazole catalysis in the curing of epoxy resins. J. Appl. Polym. Sci., 1968, 12: 159-168. https://doi.org/10.1002/app.1968.070120115 |
|
48. Ghaemy M., Sadjady S. Kinetic analysis of curing behavior of diglycidyl ether of bisphenol A with imidazoles using differential scanning calorimetry techniques. J. Appl. Polym. Sci., 2006, 100: 2634-2641. https://doi.org/10.1002/app.22716 |
|
49. Meng F., Zhang W., Zheng S. Epoxy resin cured with poly(4-vinyl pyridine). J. Mater. Sci., 2005, 40: 6367-6373. https://doi.org/10.1007/s10853-005-1732-2 |
|
50. Ricciardi F., Joullie M.M. Mechanism of imidazole catalysis in the curing of epoxy resins. J. Polym. Sci. Polym. Lett. Ed., 1982, 20: 127-133. https://doi.org/10.1002/pol.1982.130200209 |
|
51. Xue G., Ishida H., Konig J.L. Polymerization of styrene oxide with pyridine. Macromol. Chem. Rapid. Commun., 1986, 7: 37-41. https://doi.org/10.1002/marc.1986.030070107 |
|
52. Ogihara W., Washiro S., Nakajima H., Ohno H. Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim. Acta, 2006, 51: 2614–2649. https://doi.org/10.1016/j.electacta.2005.07.043 |
|
53. Nakajima H., Ohno H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer, 2005, 46: 11499–11504. https://doi.org/10.1016/j.polymer.2005.10.005 |
|
54. Washiro S., Yoshizawa M., Nakajima H., Ohno H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer, 2004, 45: 1577-1582. https://doi.org/10.1016/j.polymer.2004.01.003 |
|
55. Matsumoto K., Endo T. Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins. Macromolecules, 2008, 41: 6981-6986. https://doi.org/10.1021/ma801293j |
|
56. Matsumoto K., Endo T. Synthesis of ion conductive networked polymers based on an ionic liquid epoxide having a quaternary ammonium salt structure. Macromolecules, 2009, 42: 4580–4584. https://doi.org/10.1021/ma900508q |
|
57. Livi S., Silva A.A., Thimont Y., Nguyen T.K.L., Soa- res B.G., Gerard J.F., Duchet-Rumeau J. Nanostructured thermosets from ionic liquid building block/epoxy prepolymer mixtures. RSC Advances, 2014, 4: 28099–28106. https://doi.org/10.1039/C4RA03643C |
|
58. Shirshova N., Bismarck A., Carreyette S., Fonta- na Q.P.V., Greenhalgh E.S., Jacobsson P., Johansson P., Marczewski M.J., Kalinka G., Kucernak A.R.J., Scheers J., Shaffer M.S.P., Steinkef J.H.G., Wienriche M. Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. J. Mater. Chem. A, 2013, 1: 15300-15309. https://doi.org/10.1039/c3ta13163g |
|
59. Farkas A., Strohm P.F. Imidazole catalysis in the curing of epoxy resins. J. Appl. Polym. Sci., 1968, 12: 159-168. https://doi.org/10.1002/app.1968.070120115 |
|
60. Lu J., Yan F., Texter J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34: 431-448. https://doi.org/10.1016/j.progpolymsci.2008.12.001 |
|
61. Sanes J., Carrion F.J., Bermudez M.D. Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin. Wear, 2010, 268: 1295–1302. https://doi.org/10.1016/j.wear.2010.01.024 |
|
62. Mohamed M.H., Wilson L.D. Porous copolymer resins: tuning pore structure and surface area with non reactive porogens. Nanomaterials, 2012, 2: 163–186. https://doi.org/10.3390/nano2020163 |
|
63. Okay O. Macroporous copolymer networks. Prog. Polym. Sci., 2000, 25: 711–779. https://doi.org/10.1016/S0079-6700(00)00015-0 |
|
64. Mane S. Effect of porogens (type and amount) on polymer porosity: a review. Can. Chem. Trans., 2016, 4: 210-225. | |
65. Kubisa P. Ionic liquids in the synthesis and modification of polymers. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 4675-4683. https://doi.org/10.1002/pola.20971 |
|
66. Snedden P., Cooper A.I., Khimyak Y.Z., Scott K., Winterton N. Cross-linked polymers in ionic liquids: ionic liquids as porogens. In book: Ionic liquids in polymer systems. Solvents, additives, and novel applications. Ed.: C.S. Brazel1, R.D. Rogers. American Chemical Society, Chapter 9, 2005. https://doi.org/10.1021/bk-2005-0913.ch009 |
|
67. Booker K., Holdsworth C.I., Doherty C.M., Hill A.J., Bowyerc M.C., McCluskey A. Ionic liquids as porogens for molecularly imprinted polymers: propranolol, a model study. Org. Biomol. Chem., 2014, 12: 7201-7210. https://doi.org/10.1039/C4OB00547C |
|
68. Singco B., Lin C.L., Cheng Y.J., Shih Y.H., Huang H.Y. Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application. Anal. Chim. Acta, 2012, 746: 123-133. https://doi.org/10.1016/j.aca.2012.08.034 |
|
69. Hasegawa G., Kanamori K., Nakanishi K., Yamago S. Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer, 2011, 52: 4644–4647. https://doi.org/10.1016/j.polymer.2011.08.028 |
|
70. Throckmorton J., Palmese G. Acceleration of cyanate ester trimerization by dicyanamide RTILs. Polymer, 2016, 91: 7-13. https://doi.org/10.1016/j.polymer.2016.03.019 |
|
71. Fainleib A., Grigoryeva O., Starostenko O., Vash- chuk A., Rogalsky S., Grande D. Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate esters. eXPRESS Polym. Lett., 2016, 10: 722-729. https://doi.org/10.3144/expresspolymlett.2016.66 |
|
72. Fainleib A., Vashchuk A., Starostenko O., Grigorye-va O., Rogalsky S., Nguyen T.T.T., Grande D. Nanoporous polymer films of cyanate ester resins designed by using ionic liquids as porogens. Nanoscale Res. Lett., 2017, 12: 126 (1-9). |