2018 (1) 1

Ionic liquids and thermosetting polymers: a critical survey

 

А. Vashchuk1,2, A. Fainleib1, O. Starostenko1, D. Grande2 

 

1Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, 02160 Kyiv, Ukraine

2Institut de Chimie et des Materiaux Paris-Est, UMR 7182 CNRS – Universite Paris-Est Creteil Val-de-Marne

2 rue Henri Dunant, Thiais, 94320, France

 

Polym. J., 2018, 40, no. 1: 3-15

 

Section: Review.

 

Language: English.

 

Abstract:

 

Thermosetting polymers are widely used as industrial materials due to good heat resistance, dimensional stability and chemical resistance. Designing novel networks still remains an exciting and emerging field of research. The present paper substantiates the applications of ionic liquids (ILs) for the design of advanced thermoset derivatives. The peculiarities of the curing behavior of resins in the presence of ILs and the main properties of the cured thermosets are analyzed. The utilization of ILs in thermosetting polymers as catalytic agents, plasticizers, electrolytes or porogens is highlighted. Diverse ILs can be incorporated into a polymer matrix to achieve better final properties. To make the review more substantial, basic ideas about ILs are first outlined.

 

Keywords: thermosets, ionic liquids, catalytic agent, porogen, ionic conducting agent.

 

References

1. Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem., 2001, 3: 156-164.
https://doi.org/10.1039/b103275p
 
2. Li Y., Zhang C., Zhou Y., Chen Y.D.W. Novel multi-responsive polymer materials: When ionic liquids step in. Eur. Polym. J., 2015, 69: 441-448.
https://doi.org/10.1016/j.eurpolymj.2015.05.023
 
3. Lu J., Yan F., Texter J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34: 431-448.
https://doi.org/10.1016/j.progpolymsci.2008.12.001
 
4. Welton T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248: 2459-2477.
https://doi.org/10.1016/j.ccr.2004.04.015
 
5. Winterton N. Solubilization of polymers by ionic liquid. J. Mater. Chem., 2006, 16: 4281-4293.
https://doi.org/10.1039/b610143g
 
6. Snedden P., Cooper A.I., Scott K., Winterton N. Cross-linked polymer-ionic liquid composite materials. Macromolecules, 2003, 36: 4549-4556.
https://doi.org/10.1021/ma021710n
 
7. Klingshirn M.A., Spear S.K., Subramanian R., Hol-brey J.D., Huddleston J.G., Rogers R.D. J. Gelation of ionic liquids using a cross-linked poly(ethylene glycol) gel matrix. Chem. Mater., 2004, 16: 3091–3097.
https://doi.org/10.1021/cm0351792
 
8. Susan M.A.B.H., Kaneko T., Noda A., Watanabe M.J. Ion Gels Prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc., 2005, 127: 4976-4983.
https://doi.org/10.1021/ja045155b
 
9. Nakajima H., Ohno H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer, 2005, 46: 11499-11504.
https://doi.org/10.1016/j.polymer.2005.10.005
 
10. Neouze M.A., Bideau J.L., Gaveau P., Bellayer S., Vioux A. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem. Mater., 2006, 18: 3931-3936.
https://doi.org/10.1021/cm060656c
 
11. Tigelaar D.M., Meador M.A.B., Bennett W.R. Composite electrolytes for lithium batteries: Ionic liquids in APTES cross-linked polymers. Macromolecules, 2007, 40: 4159-4164.
https://doi.org/10.1021/ma062804q
 
12. Xie Y., Zhang Z., Jian T., He J., Han B., Wu T., Ding K. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew. Chem. Int. Ed., 2007, 46: 7255-7258.
https://doi.org/10.1002/anie.200701467
 
13. Walden P. Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Imper. Sci. St. Petersburg, 1914, 1800: 405–422.
 
14. Chum H.L., Koch V.R., Miller L.L., Osteryoung R.A. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97: 3264-3267.
https://doi.org/10.1021/ja00844a081
 
15. Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg. Chem., 1982, 21: 1263–1264
https://doi.org/10.1021/ic00133a078
 
16. Wilkes J.S., Zaworotko M.J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, 965-967.
https://doi.org/10.1039/c39920000965
 
17. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99: 2071-2083.
https://doi.org/10.1021/cr980032t
 
18. Hallett J.P., Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111: 3508-3576.
https://doi.org/10.1021/cr1003248
 
19. Marsh K.N., Boxall J.A., Lichtenthaler R. Room temperature ionic liquids and their mixtures – a review. J. Fluid Phase Equilib., 2004, 219: 93-98.
https://doi.org/10.1016/j.fluid.2004.02.003
 
20. Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 2008, 37: 123-150.
https://doi.org/10.1039/B006677J
 
21. Rogers R.D., Seddon K.R. Ionic liquids – Solvents of the future? Science, 2003, 302: 792-793.
https://doi.org/10.1126/science.1090313
 
22. Armand M., Endres F., MacFarlane D.R., Ohno H., Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nature materials, 2009, 8: 621-629.
https://doi.org/10.1038/nmat2448
 
23. Livi S., Duchet-Rumeau J., Gerard J.F., Pham T.N. Polymers and ionic liquids: a successful wedding. Macromol. Chem. Phys., 2015, 216: 359–368.
https://doi.org/10.1002/macp.201400425
 
24. Mecerreyes D. Applications of ionic liquids in polymer science and technology. Berlin: Springer-Verlag, 2015: 392. ISBN: 978-3-662-44903-5.
https://doi.org/10.1007/978-3-662-44903-5
 
25. Gaune-Escard M., Seddon K.R. Molten salts and ionic liquids: never the twain?, Hoboken: WILEY, 2010: 441. ISBN: 978-0-471-77392-4.
 
26. Wilkes J.S. A short history of ionic liquids – From molten salts to neoteric solvents. Green Chem., 2002, 4: 73-80.
https://doi.org/10.1039/b110838g
 
27. Dupont J. From molten salts to ionic liquids: a «nano» journey. Acc. Chem. Res., 2011, 44: 1223-1231.
https://doi.org/10.1021/ar2000937
 
28. Gore R.G., Rohitkumar N.G. Safer and greener catalysts – design of high performance, biodegradable and low toxicity ionic liquids. Chapter 19. In book: Ionic liquids – new aspects for the future. Ed. J. Kadokawa. InTech, 2013. ISBN 978-953-51-0937-2.
 
29. Sowmiah S., Srinivasadesikan V., Tseng M.C., Chu Y.H. On the chemical stabilities of ionic liquids. Molecules, 2009, 14: 3780-3813.
https://doi.org/10.3390/molecules14093780
 
30. Pringle J.M., Golding J., Forsyth C.M., Deacon G.B., Forsyth M., MacFarlane D.R.J. Physical trends and structural features in organic salts of the thiocyanate anion. J. Mater. Chem. 2002, 12: 3475-3480.
https://doi.org/10.1039/b208372h
 
31. Kulkarni P.S., Branco L.C., Crespo J.G., Nunes M.C., Raymondo A., Alfonso C.A.M. Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem. Eur. J. 2007, 13: 8478-8488.
https://doi.org/10.1002/chem.200700965
 
32. Maton C., De Vos N., Stevens C.V. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42: 5963-5977.
https://doi.org/10.1039/c3cs60071h
 
33. Seddon K.R., Stark A., Torres M.J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem., 2000, 72: 2275–2287.
https://doi.org/10.1351/pac200072122275
 
34. Hong K., Zhang H., Mays J.W., Visser A.E., Brazel C.S., Holbrey J.D., Reichert W.M., Rogers R.D. Conventional free radical polymerization in room temperature ionic liquids: a green approach to commodity polymers with practical advantages. Chem. Commun., 2002, 13:1368–1369.
https://doi.org/10.1039/b204319j
 
35. Maksym P., Tarnacka M., Dzienia A., Matuszek K., Chrobok A., Kaminski K., Paluch M. Enhanced polymerization rate and conductivity of ionic liquid-based epoxy resin Macromolecules, 2017, 50: 3262-3272.
https://doi.org/10.1021/acs.macromol.6b02749
 
36. Kowalczyk K., Spychaj T. Ionic liquids as convenient latent hardeners of epoxy resins. Polimery (Warsaw), 2003, 48: 833-835.
 
37. Soares B.G., Livi S., Duchert-Rumeau J., Gerard J.F. Synthesis and characterization of epoxy/MCDEA networks modified with imidazolium-based ionic liquids. Macromol. Mater. Eng., 2011, 296: 826–834.
https://doi.org/10.1002/mame.201000388
 
38. Soares B.G., Livi S., Duchet-Rumeau J., Gerard J-F. Preparation of epoxy/MCDEA networks modified with ionic liquids. Polymer, 2012, 53: 60-66.
https://doi.org/10.1016/j.polymer.2011.11.043
 
39. Silva A.A., Livi S., Netto D.B., Soares B.G., Duchet J., Gerard J.F. New epoxy systems based on ionic liquid. Polymer, 2013, 54: 2123-2129.
https://doi.org/10.1016/j.polymer.2013.02.021
 
40. Pat. WO 2011142855 A2, PCT/US2011/023739. Room temperature ionic liquids and ionic liquid epoxy adducts as initiators for epoxy systems. Palmese G.R., Rahmathullah M.A.M., Jeyarajasingam A. Publ. 17.11.11.
41. Maka H., Spychaj T., Pilawka R. Epoxy resin/ionic liquid systems: the influence of imidazolium cation size and anion type on reactivity and thermomechanical properties. Ind. Eng. Chem. Res., 2012, 51: 5197-5206.
https://doi.org/10.1021/ie202321j
 
42. Rahmathullah A. M., Jeyarajasingam A., Merritt B., VanLandingham M., McKnight S.H., Palmese G.R. Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins. Macromolecules, 2009, 42: 3219-3221.
https://doi.org/10.1021/ma802669k
 
43. Maka H., Spychaj T., Kowalczyk K. Imidazolium and deep eutectic ionic liquids as epoxy resin crosslinkers and graphite nanoplatelets dispersants. J. Appl. Polym. Sci., 2014, 131: 40401 (1-7).
 
44. Maka H., Spychaj T., Zenker M. High performance epoxy composites cured with ionic liquids. J. Ind. Eng. Chem., 2015, 31: 192-198.
https://doi.org/10.1016/j.jiec.2015.06.023
 
45. Maka H., Spychaj T., Pilawka R. Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. eXPRESS Polym. Lett., 2014, 8: 723-732.
https://doi.org/10.3144/expresspolymlett.2014.75
 
46. Liebner F., Patel I., Ebner G., Becker E., Horix M., Potthast A., Rosenau T. Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung, 2010, 64: 161-166.
https://doi.org/10.1515/hf.2010.033
 
47. Farkas A., Strohm P.F. Imidazole catalysis in the curing of epoxy resins. J. Appl. Polym. Sci., 1968, 12: 159-168.
https://doi.org/10.1002/app.1968.070120115
 
48. Ghaemy M., Sadjady S. Kinetic analysis of curing behavior of diglycidyl ether of bisphenol A with imidazoles using differential scanning calorimetry techniques. J. Appl. Polym. Sci., 2006, 100: 2634-2641.
https://doi.org/10.1002/app.22716
 
49. Meng F., Zhang W., Zheng S. Epoxy resin cured with poly(4-vinyl pyridine). J. Mater. Sci., 2005, 40: 6367-6373.
https://doi.org/10.1007/s10853-005-1732-2
 
50. Ricciardi F., Joullie M.M. Mechanism of imidazole catalysis in the curing of epoxy resins. J. Polym. Sci. Polym. Lett. Ed., 1982, 20: 127-133.
https://doi.org/10.1002/pol.1982.130200209
 
51. Xue G., Ishida H., Konig J.L. Polymerization of styrene oxide with pyridine. Macromol. Chem. Rapid. Commun., 1986, 7: 37-41.
https://doi.org/10.1002/marc.1986.030070107
 
52. Ogihara W., Washiro S., Nakajima H., Ohno H. Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim. Acta, 2006, 51: 2614–2649.
https://doi.org/10.1016/j.electacta.2005.07.043
 
53. Nakajima H., Ohno H. Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives. Polymer, 2005, 46: 11499–11504.
https://doi.org/10.1016/j.polymer.2005.10.005
 
54. Washiro S., Yoshizawa M., Nakajima H., Ohno H. Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer, 2004, 45: 1577-1582.
https://doi.org/10.1016/j.polymer.2004.01.003
 
55. Matsumoto K., Endo T. Confinement of ionic liquid by networked polymers based on multifunctional epoxy resins. Macromolecules, 2008, 41: 6981-6986.
https://doi.org/10.1021/ma801293j
 
56. Matsumoto K., Endo T. Synthesis of ion conductive networked polymers based on an ionic liquid epoxide having a quaternary ammonium salt structure. Macromolecules, 2009, 42: 4580–4584.
https://doi.org/10.1021/ma900508q
 
57. Livi S., Silva A.A., Thimont Y., Nguyen T.K.L., Soa- res B.G., Gerard J.F., Duchet-Rumeau J. Nanostructured thermosets from ionic liquid building block/epoxy prepolymer mixtures. RSC Advances, 2014, 4: 28099–28106.
https://doi.org/10.1039/C4RA03643C
 
58. Shirshova N., Bismarck A., Carreyette S., Fonta- na Q.P.V., Greenhalgh E.S., Jacobsson P., Johansson P., Marczewski M.J., Kalinka G., Kucernak A.R.J., Scheers J., Shaffer M.S.P., Steinkef J.H.G., Wienriche M. Structural supercapacitor electrolytes based on bicontinuous ionic liquid–epoxy resin systems. J. Mater. Chem. A, 2013, 1: 15300-15309.
https://doi.org/10.1039/c3ta13163g
 
59. Farkas A., Strohm P.F. Imidazole catalysis in the curing of epoxy resins. J. Appl. Polym. Sci., 1968, 12: 159-168.
https://doi.org/10.1002/app.1968.070120115
 
60. Lu J., Yan F., Texter J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34: 431-448.
https://doi.org/10.1016/j.progpolymsci.2008.12.001
 
61. Sanes J., Carrion F.J., Bermudez M.D. Effect of the addition of room temperature ionic liquid and ZnO nanoparticles on the wear and scratch resistance of epoxy resin. Wear, 2010, 268: 1295–1302.
https://doi.org/10.1016/j.wear.2010.01.024
 
62. Mohamed M.H., Wilson L.D. Porous copolymer resins: tuning pore structure and surface area with non reactive porogens. Nanomaterials, 2012, 2: 163–186.
https://doi.org/10.3390/nano2020163
 
63. Okay O. Macroporous copolymer networks. Prog. Polym. Sci., 2000, 25: 711–779.
https://doi.org/10.1016/S0079-6700(00)00015-0
 
64. Mane S. Effect of porogens (type and amount) on polymer porosity: a review. Can. Chem. Trans., 2016, 4: 210-225.
 
65. Kubisa P. Ionic liquids in the synthesis and modification of polymers. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 4675-4683.
https://doi.org/10.1002/pola.20971
 
66. Snedden P., Cooper A.I., Khimyak Y.Z., Scott K., Winterton N. Cross-linked polymers in ionic liquids: ionic liquids as porogens. In book: Ionic liquids in polymer systems. Solvents, additives, and novel applications. Ed.: C.S. Brazel1, R.D. Rogers. American Chemical Society, Chapter 9, 2005.
https://doi.org/10.1021/bk-2005-0913.ch009
 
67. Booker K., Holdsworth C.I., Doherty C.M., Hill A.J., Bowyerc M.C., McCluskey A. Ionic liquids as porogens for molecularly imprinted polymers: propranolol, a model study. Org. Biomol. Chem., 2014, 12: 7201-7210.
https://doi.org/10.1039/C4OB00547C
 
68. Singco B., Lin C.L., Cheng Y.J., Shih Y.H., Huang H.Y. Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application. Anal. Chim. Acta, 2012, 746: 123-133.
https://doi.org/10.1016/j.aca.2012.08.034
 
69. Hasegawa G., Kanamori K., Nakanishi K., Yamago S. Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer, 2011, 52: 4644–4647.
https://doi.org/10.1016/j.polymer.2011.08.028
 
70. Throckmorton J., Palmese G. Acceleration of cyanate ester trimerization by dicyanamide RTILs. Polymer, 2016, 91: 7-13.
https://doi.org/10.1016/j.polymer.2016.03.019
 
71. Fainleib A., Grigoryeva O., Starostenko O., Vash- chuk A., Rogalsky S., Grande D. Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate esters. eXPRESS Polym. Lett., 2016, 10: 722-729.
https://doi.org/10.3144/expresspolymlett.2016.66
 
72. Fainleib A., Vashchuk A., Starostenko O., Grigorye-va O., Rogalsky S., Nguyen T.T.T., Grande D. Nanoporous polymer films of cyanate ester resins designed by using ionic liquids as porogens. Nanoscale Res. Lett., 2017, 12: 126 (1-9).