2018 (2) 1
Effect of ionic liquids on peculiarities of formation of cross-linked polycyanurate
A. Fainleib1, А. Vashchuk1,3, O. Starostenko1, O. Grigoryeva1, S. Rogalsky2, D. Grande3
1Institute of Macromolecular Chemistry NAS of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
2Institut de Chimie et des Materiaux Paris-Est, UMR 7182 CNRS – Universite Paris-Est Creteil Val-de-Marne
2 rue Henri Dunant, Thiais, 94320, France
3Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine
50, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2018, 40, no. 2: 71-79
Section: Synthesis polymers.
Language: Ukrainian.
Abstract:
The kinetic peculiarities of polycyanurate formation from dicyanic ester of bisphenol E (DCBE) in the presence of 1.0 wt.% of ionic liquids (ILs) of different chemical natures have been investigated and discussed. To this purpose, three distinct ILs have been used: aprotic IL- 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIm][BF4]), protic IL – 2- (hydroxyethylamino) imidazolium chloride ([HEAIm][HCl]), and protic polymeric IL – polyhexamethylene guanidine toluenesulfonate ([PHMG][TS]). Using FTIR spectroscopy, it was found that ILs catalyzed the process of DCBE polycyclotrimerization. Interestingly, [HEAIm][HCl] and [PHMG][TS] chemically incorporated into the polymer network structure, whereas [OMIm][BF4] was chemically inert towards DCBE. The maximum rate of polycyclotrimerization increased by 15%; 19% and 29% for DCBE/[PHMG][TS], DCBE/[HEAIm][HCl] and DCBE/[OMIm][BF4], respectively. On the basis of model reactions, appropriate mechanisms of formation and chemical structures of hybrid polycyanurate networks were proposed.
Keywords: polycyanurate, ionic liquid, catalytic effect.
References
1. Hamerton I. Chemistry and technology of cyanate ester resins. Glasgow: Chapman & Hall, 1994: ISBN 978-94-011-1326-7.
2. Fainleib A. Thermostable polycyanurates: synthesis, modification, structure and properties. New York: Nova Science Publishers, 2010: ISBN 978-16-132-4781-5.
3. Goertzen W.K., Kessler M.R. Thermal and mechanical evaluation of cyanate ester composites with low-temperature processability. Compos. Part A Appl. Sci. Manuf., 2007, 38: 779–784.
4. Sheng X., Akinc M., Kessler M.R. Cure kinetics of thermosetting bisphenol E cyanate ester. J. Therm. Anal. Calorim, 2008, 93: 77–85.
5. Throckmorton J., Palmese G. Acceleration of cyanate ester trimerization by dicyanamide RTILs. Polymer, 2016, 91: 7–13.
6. Handy S.T. Room temperature ionic liquids: Different classes and physical properties. Curr. Org. Chem., 2005, 9: 959–988.
7. Parvulescu V.I., Hardacre C. Catalysis in ionic liquids. Chem. Rev., 2007, 107: 2615–2665.
8. Wasserscheid P., Welton T. Ionic liquids in synthesis. Weinheim: VCH-Wiley, 2002: ISBN 3-527-30515-7.
9. Zhou J., Cheng L, Wu D. Ring-opening polymerization of ethylene carbonate using ionic liquids as catalysts. e-Polymers, 2011, 11: 883–891.
10. Kaoukabi A., Guillen F., Qayouh H., Bouyahya A., Balieu S., Belachemi L., Gouhier G., Lahcini M. The use of ionic liquids as an organocatalyst for controlled ring-opening polymerization of ϵ-caprolactone. Ind. Crops Prod., 2015, 72: 16–23.
11. Abdolmaleki A., Mohamadi Z. Acidic ionic liquids catalyst in homo and graft polymerization of ε-caprolactone. Colloid. Polym. Sci., 2013, 291: 1999–2005.
12. Ding S., Radosz M., Shen Y. Ionic liquid catalyst for biphasic atom transfer radical polymerization of methyl methacrylate. Macromolecules, 2005, 38: 5921–5928.
13. Kanno S. Challenges for unique application of ionic liquids as a novel initiator of radical polymerization. Mol. Cryst. Liq. Cryst., 2014, 603: 1–3.
14. Yang F., Yang J., Zheng K., Stansbury J.W., Nie J. Electro-induced cationic polymerization of vinyl ethers by using ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate as initiator. Macromol. Chem. Phys., 2015, 216: 380–385.
15. Wu Y., Han L., Zhang X., Mao J., Gong L., Guo W., Gu K., Li S. Cationic polymerization of isobutyl vinyl ether in an imidazole-based ionic liquid: characteristics and mechanism. Polym. Chem., 2015, 6: 2560–2568.
16. Mecerreyes D. Applications of ionic liquids in polymer science and technology. Berlin: Springer-Verlag, 2015: ISBN 978-3-662-44903-5.
17. Livi S., Duchet-Rumeau J., Gerard J.F., Pham T.N. Polymers and ionic liquids: a successful wedding. Macromol. Chem. Phys., 2015, 216: 359–368.
18. Fainleib A., Vashchuk A., Starostenko O., Grigoryeva O., Rogalsky S., Nguyen T.T.T., Grande D. Nanoporous polymer films of cyanate ester resins designed by using ionic liquids as porogens. Nanoscale Res. Lett., 2017, 12: 1–9.
19. Fainleib A., Grigoryeva O., Starostenko O., Vashchuk A., Rogalsky S., Grande D. Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate esters. eXPRESS Polym. Lett., 2016, 10: 722–729.
20. Pregl F. Quantitative Micro-Analysis of Organic Substances. Berlin: Springer, 1917: ISBN 978-3-86444-914-7.
21. Dzyuba S.V., Bartsch R.A. Efficient synthesis of 1-alkyl(aralkyl)-3-methyl(ethyl)imidazolium halides: Precursors for room-temperature ionic liquids. J. Heterocyclic Chem., 2001, 38: 265–268.
22. Ennis E., Handy T.S. Facile route to C2-substituted imidazolium ionic liquids. Molecules, 2009, 14: 2235–2245.
23. Denk M.K., Ye X. Alkylation of ehtylenethiourea with alcohols: a convenient synthesis of S-alkyl-isothioureas without toxic alkylating agents. Tetrahedron Lett., 2005, 46: 7597–7599.
24. Nyquist R.A., Putzig C.L., Clark T.D. Infrared study of 1,3-dimethyl-2-imidazolidinone in various solvents. Vibrational Spectroscopy, 1996, 12: 81–91.
25. Piasek Z., Urbanski T. The infra-red absorption spectrum and structure of urea. Bull. Acad. Pol. Sci., 1962, 10: 113–120.
26. Arshad M.N., Bibi A., Mahmood T., Asiri A.M., Ayub K. Synthesis, crystal structures and spectroscopic properties of triazine-based hydrazone derivatives; A comparative experimental-theoretical study. Molecules, 2015, 20: 5851–5874.
27. Guo R., Sanders D.F., Smith Z.P., Freeman B.D., Paul D.R., McGrath J.E. Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties. J. Mater. Chem. A, 2013, 1: 6063–6072.
28. Kimura H., Ohtsuka K., Matsumoto A. Curing reaction of bisphenol-A based benzoxazine with cyanate ester resin and the properties of the cured thermosetting resin. eXPRESS Polym. Lett., 2011, 5: 1113–1122.