2018 (2) 4

Structure and properties of interpenetrating polymer networks containing poly(titanium oxide) obtained in 2-hydroxyethyl methacrylate medium

 

T.T. Alekseeva, T.V.Tsebrienko, N.V. Babkina, N.V. Iarova, L.O. Vorontsova

 

Institute of Macromolecular Chemistry of NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2018, 40, no. 2: 98-105

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

 

The influence of poly(titanium oxide) obtained by sol-gel method in the medium of 2-hydroxyethyl methacrylate on the viscoelastic and thermophysical properties of interpenetrating polymer networks (IPNs) based on the crosslinked polyurethane, poly(hydroxyethyl methacrylate) (PHEMA) was investigated.The two-phase structure both the initial IPNs and the organo-inorganic (OI) IPNs was established by dynamic mechanical analysis and differential scanning calorimetry (DSC) methods. The presence of poly(titanium oxide) increases the compatibility of IPNs components as was shown by DSC and scanning electron microscopy (SEM). It was found the increasing of poly(titanium oxide) content leads to decrease the intensity of the relaxation maximum of PHEMA phase and to increase the effective crosslinking density due to a partial grafting of the inorganic component to acrylate one. It was shown that the topology of the structure of poly(titanium oxide) significantly influences the relaxation behavior of OI IPNs samples. According to SEM data, the distribution of the inorganic component in the polymer matrix is uniform, without significant aggregation.

 

Key words: poly(titanium oxide), sol-gel method, interpenetrating polymer networks, 2-hydroxyethyl methacrylate, polyurethane.

 

References

 

1. Sperling L.H. Interpenetrating polymer networks and related materials. New York: Plenum Press, 1981: 265.
2. Lipatov Y.S., Alekseeva T.T. Phase-separated Interpenetrating Polymer Networks. Advances Polym. Sci. Berlin Springer, 2007, 208: 1–227.
3. Fouassier J.P., Lalevее J. Photochemical production of interpenetrating polymer networks; simultaneous initiation of radical and cationic polymerization reactions. Polym., 2014, 6: 2588″2610.
4. Pandey S., Mishra S.B. Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications. J. Sol-Gel Sci. Technol., 2011, 59: 73–94. https://doi.org/10.1007/s10971-011-2465-0
5. Canto C.F., de A. Prado L.A.S., Radovanovic E., Yoshida I.V.P. Organic–Inorganic Hybrid Materials Derived From Epoxy Resin and Polysiloxanes: Synthesis and Characterization. Polym. Eng. Sci., 2008, 48:141–148. https://doi.org/10.1002/pen.20931
6. Wang S., Kang Y., Wang L., Zhang H., Wang Y., Wang Y. Organic/inorganic hybrid sensors: A review. Sensors and Actuators B: Chem., 2013, 182: 467–481. https://doi.org/10.1016/j.snb.2013.03.042
7. Fadeeva E., Koch J., Chichkov B., Kuznetsov A., Kameneva O., Bityurin N., Sanchez C., Kanaev A. Laser imprinting of 3D structures in gel-based titanium oxide organic-inorganic hybrids. Appl. Physics A. 2006; 84 (1): 27 –30.
8. Ou C.-F., Hsu M.-C. Preparation and properties of cyclo-olefin copolymer/titania hybrids. J. Appl. Polym. Sci. 2007, 104: 2542–2548. https://doi.org/10.1002/app.25983
9. Li S., Shah A., Hsieh A.J., Haghighat R., Praveen S.S., Mukherjee I., Wei E., Zhang Z., Wei Y. Characterization of poly(2-hydroxyethyl methacrylate-silica) hybrid materials with different silica contents. Polymer, 2007, 48, no. 14: 3982–3989.
10. Yang M., Dan Y. Preparation and characterization of poly(methyl methacrylate)/titanium oxide composite particles. Colloid Polym Sci., 2005, 284: 243–250.
11. Laachachi A., Cochez M., Ferriol M., Lopez-Cuesta J.M., Leroy E. Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate)(PMMA). Mater. Lett. 2005; 59: 36–39. https://doi.org/10.1016/j.matlet.2004.09.014
12. Dzunuzovic E., Jeremica K., Nedeljkovic J.M. In situ radical polymerization of methyl methacrylate in a solution of surface modified TiO2 and nanoparticles. European Polymer J., 2007, 43, no. 9: 3719–3726. https://doi.org/10.1016/j.eurpolymj.2007.06.026
13. Babkina N.V., Tsebrienko T.V., Alekseeva T.T. The viscoelastic properties of the organic-inorganic IPN based on polyurethane, poly(hydroxyethyl methacrylate) and polу(titanium oxide), obtained by sol-gel method. Polym. J. (Rus.), 2016, 38, no. 4: 288–296.
14. Tsebrienko T.V., Alekseeva T.T., Menzheres G.Ya., Ostapyuk S.N. IR-spectral study of the poly(titanium oxide) gels and hybrid polyurethane, Ukr. Chem. J. (Rus.), 2016, 82, no. 9–10: 96–108.
15. Fild R., Kouv P. Organicheskaja himija titana. Moscow: Mir, 1969: 261 [Rossia].
16. Tejlor D. Vvedenie v teoriju oshibok. Moscow: Mir, 1985: 272 [Rossia].
17. Beckman E.J., Karasz F.E., Porter P.S., McKnight W.J. Estimation of the interfacial fraction in partially miscible polymer blends from differential scanning calorimetry measurements. Macromol., 1988, 21, no. 4: 1193–1199 [Rossia].
18. Nil’sen L. Mehanicheskie svojstva polimerov i polimernyh kompozicij. Moscow: Himija, 1978: 312.
19. Salomatina E.V., Bityurin N.M., Gulenova M.V., Gracheva T.A., Drozdov M.N., Knyazev A.V., Kir’yanov K.V., Markin A.V. and Smirnova L.A. Synthesis, structure, and properties of organic–inorganic nanocomposites containing poly(titanium oxide). J. Mater. Chem. C, 2013, 39, no.1: 6375–6385. https://doi.org/10.1039/c3tc30432a.
20. Trabelsi S., Janke A., Hassler R., Zafeiropoulos N.E., Fornasieri G., Bocchini S., Rozes L., Stamm M., Gerard J.F., Sanchez C. Novel organo-functional titanium-oxo-cluster-based hybrid materials with enhanced thermomechanical and thermal properties. Macromol., 2005, 38: 6068–6078. https://doi.org/10.1021/ma0507239
21. Wu C.S. In Situ Polymerization of Titanium Isopropoxide in Polycaprolactone: Properties and Characterization of the Hybrid Nanocomposites. J. Appl. Polym. Sci., 2004, 92: 1749–1757.
22. Hourston D.J., Schдfer F.U. Polyurethane/polystyrene one-shot interpenetrating polymer networks with good damping ability: transition broadening through crosslinking, internetwork grafting and compatibilization. IPNs around the world. Sci. and engi., 1997: 155–171.
23. Ignatova T. D., Tsebrienko T.V., Vorontsova L.O., Alekseeva T.T. Phase Separation of Ti-containing Interpenetrating Polymer Networks depending on the Kinetics of Their Formation. Dopov. Nac. acad. nauk Ukr. (Ukr.), 2017, no. 6: 66–73. https://doi.org/10.15407/dopovidi2017.06.066