2018 (3) 1
https://doi.org/10.15407/polymerj.40.03.141
Cyclodextrin-containing polymers: synthesis and use
S.V. Riabov, V.V. Boyko, L.V. Kobrina
Institute of Macromolecular Chemistry, National Academy of Science of Ukraine
48, Kharkivske schose, 02160 Kyiv, Ukraine
Polym. J., 2018, 40, no. 3: 141-154
Section: Review.
Language: Ukrainian.
Abstract:
A review of the main methods for obtaining polymers and polymer systems of various structures based on or using cyclodextrins (CDs) has been given. Unique structural features of CDs, namely the separation of hydrophilic and hydrophobic groups, cause unusual physical and chemical properties of these molecules. The most important property of natural or chemically modified CDs is the ability to reversibly and selectively bind organic, inorganic, and biological molecules, forming inclusion complexes (ICs) of the “guest–host” type. Such systems are interesting in that, on the one hand, a process of incorporation into the CDs cavity of the molecule – the “guest”, and on the other hand – the retention of the substrate by the proper polymer network formed by the macrocycles of the CD is possible. Due to such properties, cyclodextrin-containing polymers are of interest both from the scientific (the study of various model interactions) and from the practical points of view.The most interesting examples of the application of ICs with CDs in pharmaceutical, food, and chemical industry, spectrometric analysis, separation technologies, of the use of CDs as models for molecular recognition in biology are given in the review. The mechanism and methods of the formation of ICs, their properties and the methods of analysis have been described. Particular attention has been paid to cyclodextrin-containing polymers. The review gives examples of the use of CDs and their derivatives as prepolymers for the development of a wide range of polymer networks and complexes. One of the new promising directions of the application of CDs, namely, the preparation of nanosized materials, has been considered.
Key words: cyclodextrins (CD), complex, polymers, sorbents, catalysts.
References
1. Lenn J.-M. Supramolecular chemistry: Concepts and perspectives. Novosibirsk: Science, 1998: 334. ISBN5-02-031603-2.
2. Atwood J.L., Gokel G.W., BarbourL.J., editors. Comprehensive Supramolecular chemistry.Vol.1. Amsterdam: Elsevier Ltd, 2017:495. ISBN978-0-12-803198-8.
3. Schneider H.J. Applications of supramolecular chemistry. Boca Raton: CRC Press, 2012: 454. ISBN 978-1-4398-4014-6. https://doi.org/10.1201/b11798
4. Kurkov S.V., Loftsson T. Cyclodextrins. Int J Pharm. 2013, 453: 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055
5. Huang W.Z., Zhan T.G., Lin F., Zhao X. Recent progress in the construction and regulation of supramolecular polymers based on host-guest interactions. Prog Chem. 2016; 2-3: 165–83.
6. Dodziuk H. Cyclodextrins and their Complexes. Chemistry, Analytical Methods,Applications. Weinheim: Wiley-VCH, Verlag GmbH & Co KGaA; 2006: 507. ISBN-13: 978-3-527-31280-1. https://doi.org/10.1002/3527608982
7. Connors A. Kenneth. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev., 1997, 97: 1325–1357. https://doi.org/10.1021/cr960371r
8. Wenz G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. Engl., 1994, 33: 803–822. https://doi.org/10.1002/anie.199408031
9. Li J. –M., Meng X.-G., Hu C.-W.,DuJ. Adsorption of phenol, p-chlorophenol and p-nitrophenil onto functional chitosan.Bioresource Technology, 2009, 100: 1168–1173. https://doi.org/10.1016/j.biortech.2008.09.015
10. Sebille B., Guillaume M., Vidal-Madjar C., Thuaud N. Retention and enantioselectivity properties of b-cyclodextrin polymers and derivatives on porous silica for reverse-phase liquid chromatographic separation of enantiomers. Chromatographia, 1997, 45, no. 1: 383–389. https://doi.org/10.1007/BF02505589
11. Crini G. Lekchiri Y., Morcellet M.Separation of structural isomers using cyclodextrin-polymers coated on silica beads. Chromatographia, 1995, 40, no. 5–6: 296–302. https://doi.org/10.1007/BF02290360
12. Crini G., Torri G., Lekchiri Y., Martel B., Janus L., Morcellet M. High performance liquid chromatography of structural isomers using a cyclodextrin-poly(allylamine) coated silica column.Chromatographia, 1995, 41, no. 7–8: 424–429. https://doi.org/10.1007/BF02688063
13. Beesley T. E., Scott Raymond P.W. Chiral Chromatography.Chichester.: John Wiley & Sons Ltd, 1998: 507. ISBN 9780471974277,0-471-97427-7.
14. Stjern L., Voittonen S., Weldemichel R., ThuressonS., Agnes M., Benkovics G., Fenyvesi E., Malanga M., Yannakopoulou K., Feiler A. Valetti S. Cyclodextrin-mesoporous silica particle composites for controlled antibiotic release. A proof of concept toward colon targeting. Int.J.of Pharm., 2017, 531, no. 2: 595–605. https://doi.org/10.1016/j.ijpharm.2017.05.062
15. Walker T. A. Separation of Beraprost sodium isomers using different cyclodextrin stationary phases . J. of Chromatography Part A, 1993, 633, no. 1-2: 97–103. https://doi.org/10.1016/0021-9673(93)83142-F
16. Tanaka M., Kawaguchi Y., Nakae M., MizobuchiY., Shono T. Separation of disubstituted benzene isomers on chemically bondedcyclodextrin stationary phases. J. of Chromatography Part A, 1982, 246, no. 2: 207–214. https://doi.org/10.1016/S0021-9673(00)95860-6
17. Aytac Z., Kusku S.I., Durgun E., Uyar T. Quercetin/ b-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food chemistry, 2016, 197: 864–871. https://doi.org/10.1016/j.foodchem.2015.11.051
18. Aytac Z., Uyar T. Antioxidant activity and photostability of a-tocopherol/b-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur. Polym. J., 2016, 79: 140–149. https://doi.org/10.1016/j.eurpolymj.2016.04.029
19. Harada A., Furue M., Nozakura S. Cyclodextrin-Containing Polymers. 1. Preparation of Polymers. Macromolecules.1976, 9, no. 5: 701–704. https://doi.org/10.1021/ma60053a003
20. Khan A. R., Forgo P., Stine K. J., D’Souza V. T. Methods for Selective Modifications of Cyclodextrins. Chem. Reviews, 1998, 98, no. 5: 1977–1996. https://doi.org/10.1021/cr970012b
21. Liu. Y-Y., Fan X.-D. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups. Biomaterials, 2005, 26, no. 32: 6367–6374. https://doi.org/10.1016/j.biomaterials.2005.04.011
22. Martel B., Morcellet M.Cyclodextrin-poly(vinylamine) systems – II. Catalytic hydrolysis of p-nitrophenyl acetate. Eur. Polymer J., 1995, 31, no. 11: 1089–1093. https://doi.org/10.1016/0014-3057(95)00083-6
23. Chung M. A., Adams J.Complexation of Pyrene by Poly(allylamine) with Pendant b-Cyclodextrin Side Groups Hollas. The J. of Phys. Chem. Part B. 1998, 102, no. 16: 2947–2953. https://doi.org/10.1021/jp9800719
24. Deratani A., Popping B., Muller G. Linear cyclodextrin-containing polyelectrolytes, 1. Synthesis of poly(1-vinylimidazole)-supported b-cyclodextrin. Effect of pH and ionic strength on the solution behavior. Macromol. Chem. and Physics, 1995, 196, no. 1: 343–352. https://doi.org/10.1002/macp.1995.021960124
25. Hattori K., Takahashi K., Mikami M. Novel high-performance liquid chromatographic adsorbents prepared by immobilization of modified cyclodextrins. J. of Chromatography. Part A, 1986, 355: 383–391.
26. Pat. 4 274 985 USA, IC C08L 5/16 (20060101); C08L 5/00 (20060101). Cyclodextrin-polyvinyl alcohol polymers and a process for the preparation thereof in a pearl, foil, fiber or block form. J. Szejtli, E. Fenyvesi, S. Zoltan, B. Zsadon, F. Tudos. Publ. 23.06.1981.
27. Sreenivasan K. Synthesis and Evaluation of b-Cyclodextrin–2-Hydroxyethyl Methacrylate Copolymer as a Novel Adsorbent. Polym. International, 1997, 42, no. 1: 22–24. https://doi.org/10.1002/(SICI)1097-0126(199701)42:1<22::AID-PI643>3.0.CO;2-K
28. Salmaso S., Semenzato A., Bersani S., Matricardi P., Rossi F., Caliceti P. Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int. J. of Pharm., 2007, 345, no. 1–2: 42–50. https://doi.org/10.1016/j.ijpharm.2007.05.035
29. Cesteros L. C., Ramirez C. A., Pecina A., Katime I. Synthesis and Properties of Hydrophilic Networks Based on Poly(ethylene glycol) and b-Cyclodextrin.Macromol. Chem. and Physics, 2007, 208, no. 16: 1764–1772. https://doi.org/10.1002/macp.200700109
30. Cesteros L. C., Gonzalez-Teresa R., Katime I. Hydrogels of b-cyclodextrin crosslinked by acylated poly(ethylene glycol): Synthesis and properties.Europ. Polym. J., 2009, 45, no. 3: 674–679. https://doi.org/10.1016/j.eurpolymj.2008.12.021
31. Kono H., Nakamura T., Hashimoto H., Shimizu Y. Characterization, moleculardynamics, and encapsulation ability of b-cyclodextrin polymers crosslinked bypolyethylene glycol. Carbohydr. Polym. 2015, 128: 11–23. https://doi.org/10.1016/j.carbpol.2015.04.009
32. Liu, Y., Zou, C., Li, C., Lin, L., Chen, W. Evaluation of b-cyclodextrin–polyethylene glycol as green scale inhibitors for produced-water in shale gas well. Desalination, 2016, 377, no. 1: 28–33. https://doi.org/10.1016/j.desal.2015.09.007
33. Morin-Crini N, Crini G. Environmental applications of water-insoluble betacyclodextrin-epichlorohydrin polymers. Prog. Polym. Sci. 2013, 38: 344–368. https://doi.org/10.1016/j.progpolymsci.2012.06.005
34. Gidwani B., Vyas A. Synthesis, characterization and application of epichlorohydrin-cyclodextrin polymer. Colloids Surf. Part B. 2014, 114: 130–137. https://doi.org/10.1016/j.colsurfb.2013.09.035
35. Gu T., Tsai G.J., Tsao G.T. Synthesis of Rigid Cyclodextrin-Containing Polymeric Resins for Adsorption. J. Incl. Phenom. Macrocycl. Chem. 2006, 56: 375–9. https://doi.org/10.1007/s10847-006-9119-9
36. Binello A., Robaldo B., Barge A., Cavalli R., Cravotto G. Synthesis of cyclodextrinbased polymers and their use as debittering agents. J Appl Polym Sci. 2008, 107: 2549–2557. https://doi.org/10.1002/app.27249
37. Van de Manakker F., Vermonden T., Van Nostrum C.F., Hennink W.E. Cyclodextrinbased polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 2009, 10: 3157–3175. https://doi.org/10.1021/bm901065f
38. Solms V.J., Egli R.H.Harze mit Einschlusshohlrдumen von Cyclodextrin-Struktur . Helvetica Chimica Acta. 1965, 48, no. 6: 1225–1228. https://doi.org/10.1002/hlca.19650480603
39. Yua J. C., Jianga Z.-T., Liua H.-Y., Lizhi Zhanga J. Y. b-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Analyt. Chim. Acta. 2003, 477: 93–101. https://doi.org/10.1016/S0003-2670(02)01411-3
40. Wiedenhof N. Properties of Cyclodextrins Part IV: Features and Use of Insoluble Cyclodextrin-Epichlorohydrin-Resins. Die Starke, 1969, 21: 163–166. https://doi.org/10.1002/star.19690210606
41. Pat. 58-171404 Japan, IC C08 B 37/16, C 08 G 59/02. Production of polycyclodextrin beads. H. Kazuaki, M. Satoshi. Publ. 08.10.1983.
42. Morin-Crini N., Winterton P.,Fourmentin S., Wilson L., Fenyvesi E.,Crini G. Water-insoluble b-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Progress in Polymer Science, 2018, 78: 1–23. https://doi.org/10.1016/j.progpolymsci.2017.07.004
43. Crini G., Bertini S., Torri G., Naggi A., Storzini D., Vecchi C. Sorption of aromatic compounds in water using insoluble cyclodextrin polymers. J. of Applied Polym. Sci. 1998, 68: 1973–1978. https://doi.org/10.1002/(SICI)1097-4628(19980620)68:12<1973::AID-APP11>3.0.CO;2-T
44. Yu J.C., Jiang Z.T., Liu H.Y., Yu J., Zhang Z. b-cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Anal. Chim. Acta. 2003, 477: 93–101. https://doi.org/10.1016/S0003-2670(02)01411-3
45. Prochowicz D., Kornowicz A., Justyniak I., Lewinski J. Metal complexes based on cyclodextrins: Synthesis and structural diversity. Coord. Chem. Rev. 2016; 306: 331–45. https://doi.org/10.1016/j.ccr.2015.07.016
46. Vandenbossche M., Jimenez M., Casetta M., Traisnel M. Remediation of Heavy Metals in wastewaters by Biomolecules – A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45: 1644–704. https://doi.org/10.1080/10643389.2014.966425
47. Pat. 4 547 572 USA, IC A61K 9/20; C08B 37/00; C08B 37/16. Cyclodextrin polymers swelling quickly and to a great extent in water and process for the preparation thereof. E. Fenyvesi, J. Szejtli, B. Zsadon, B. Antal, P. Wagner. Publ. 15.10.1985.
48. Li J., Xiao H., Li J., Zhong Y. Drug carrier systems based on water-soluble cationic в-cyclodextrin polymers. Inter. J. of Pharma, 2004, 278: 329–342.
https://doi.org/10.1016/j.ijpharm.2004.03.026
49. Fenyvesi E., Ujhazy A., Szejtli J., Putter S., Gan T.G. Controlled release of drugs from CD polymerssubstituted with ionic groups. J. of inclusion phenomena and molecular recognition in chem. 1996, 25: 185–189.
50. Pat. 4 535 152USA, ICC08B 37/00; C08B 37/16.Water soluble cyclodextrin polymers substituted by ionic groups and process for the preparation thereof. J. Szejtli, B. Zsadon, E. Fenyvesi, M. Szilasi, F. Tudos. Publ. 13.08.1985.
51. Moon J.Y., Jung H.J., Moon M.H., Chung B.C., Choi M.H. Inclusion complex-based solid phase extraction of steroidal compounds with entrapped b-cyclodextrin polymer. Steroids, 2008; 73: 1090–1097. https://doi.org/10.1016/j.steroids.2008.04.008
52. Pat.7951890 USA, IC B2. M.H. Choi, H.K. Dong, B.C. Chung, J.Y. Moon. Solid phase extraction method of steroid hormones by entrapped beta-cyclodextrin polymers. Publ. 31.05.2011.
53. Rodriguez-Tenreiro C., Alvarez-Lorenzo C., Rodriguez-Perez A., Concheiro A., Torres-Labandeira J.J. Estradiol sustained release from high affinity cyclodextrin hydrogels. Europ. J. of Pharmaceutics and Biopharmaceutics, 2007, 66, no. 1: 55–62. https://doi.org/10.1016/j.ejpb.2006.09.003
54. Werner T.C., Colwell K., Agbaria R., Warner I.M. Binding of Pyrene to Cyclodextrin Polymers. Applied Spectroscopy. 1996, 50: 511–516. https://doi.org/10.1366/0003702963906041
55. Koopmans C., Ritter H. Formation of Physical Hydrogels via Host-Guest Interactions of b-Cyclodextrin Polymers and Copolymers Bearing Adamantyl Groups. Macromolecules. 2008, 41: 7418–7422. https://doi.org/10.1021/ma801202f
56. Crini G. Morcellet M. Synthesis and application of adsorbents containing cyclodextrins J. Sep. Sci. 2002. 25: 789–813. https://doi.org/10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J
57. Crini G.Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresource Technology. 2003, 90, no. 2: 193–198. https://doi.org/10.1016/S0960-8524(03)00111-1
58. Amiel C., Sebille B. Association between amphiphilic poly(ethylene oxide) and в-cyclodextrin polymers: aggregation and phase separation. Advances in Colloid and Interface Sci.1999, 79, no. 2–3: 105–122. https://doi.org/10.1016/S0001-8686(98)00070-0
59. Amira El Shafei, Shaarawy S., Hebeish A.Application of reactiv cyclodextrin poly butyl acrylate preformed polymers containing nano-ZnO to cotton fabrics and their impact on fabric performance. Carbohydrate. 2010, 79, no. 4: 852–857. https://doi.org/10.1016/j.carbpol.2009.10.007
60. Romo A., Penas F. J., Isasi J.R., Garcia-Zubiri I.X., Gonzales–Guitano G. Extraction of phenols from aqueous solutions by b-cyclodextrins polymers. Comparison of sorptive capacities with other sorbents. Reactive and functional polymers. 2008, 68, no. 1: 406–413. https://doi.org/10.1016/j.reactfunctpolym.2007.07.005
61. Wang X., Zeng H., Wei Y.,Lin J.-M.A reversible fluorescence sensor based on insoluble b-cyclodextrin polymer for direct determination of bisphenol A (BPA). Sensors and Actuators B: Chemical. 2006, 114, no. 2: 565–572. https://doi.org/10.1016/j.snb.2005.06.020
62. Garcia-Zubiri I.X., Gonzalez-Gaitano G., Isasi J.R. Isosteric heats of sorption of 1-naphthol and phenol from aqueous solutions by b-cyclodextrin polymers. J. of Colloid and Interface Sci. 2007, 307, no. 1: 64–70. https://doi.org/10.1016/j.jcis.2006.10.076
63. Ju J.-F., Syu M.-J., Teng H.-S., Chou S.-K., Chang Y.-S.Preparation and identification of b-cyclodextrin polymer thin film for quartz crystal microbalance sensing of benzene, toluene, and p-xylene. Sensors and Actuators B: Chemical. 2008, 132, no. 1: 319–326. https://doi.org/10.1016/j.snb.2008.01.052
64. Riabov S.V., Kerch Yu.Yu., Kobrina L.V., Kobylinsky S.N., Laptiy S.V. Synthesis and sorption characteristics of cyclodextrin-containing polymers Polym. J. 2006, 28, no. 1: 47–52.
65. Riabov S.V., Shevchenko V.V., Protasova N.V., Semenovich G.M. Compos. Polym. Materials. 2000, 22, no. 1: 9–12.
66. Ostashko V.V. Cyclodextrin-containing polymers and their inclusion complexes. Thesis. for scientific degree of Ph.D. Kyiv. 2011: 156.
67. Mizobuchi Y., Tanaka M., Shono T. Preparation and sorption behaviour of cyclodextrinpolyurethane resins. J. of Chromatography. Part A. 1980, 194: 153–161. https://doi.org/10.1016/S0021-9673(00)87291-X
68. Mohamed M.H., Wilson L.D., Headley J.V. Investigation of the sorption properties of b-cyclodextrin-based polyurethanes with phenolic dyes and naphthenates. J. Colloid. Interface Sci. 2011, 356: 217–26. https://doi.org/10.1016/j.jcis.2010.11.002
69. Mohamed M.H., Wilson L.D., Headley J.V. Tuning the physicochemical properties of b-cyclodextrin-based polyurethanes via cross-linking conditions. Microporous Mesoporous Mater. 2015, 214: 23–31. https://doi.org/10.1016/j.micromeso.2015.04.029
70. Pat. 0575978 (A2) Europe, ICC08B37/16. Lipophilic cyclodextrin polymers J. Szejtli, S. Puetter. Publ. 29.12.1993.
71. Pat. 3 472 835 USA, IC C07b 21/00; C08b 28/00 Schardinger dextrins S. Buckler, R. Martel, R.J. Moshy. Publ. 14.10.1969.
72. Pat. 4 958 015 USA, ICB01J 20/26 (20060101); B01J 20/22 (20060101). Preparation of crosslinked cyclodextrin resins with enhanced porosity. H. Zemel, M. Koch. Publ. 18.09.1990.
73. Kutner W., Storck W., Doblhofer K. Preparation and properties of insoluble films of cyclodextrin condensationpolymers. Journal of inclusion phenomena and molecular recognition in chemistry. 1992, 13, no. 3: 257–265.
74. Carpov A., Mocanu G., Vizitiu D. Functional cyclodextrins. 1. Chloroacetylated cyclodextrins. Die Angewandte Makromolekulare Chemie.1998, 256, no. 1: 75–79. https://doi.org/10.1002/(SICI)1522-9505(19980401)256:1<75::AID-APMC75>3.0.CO;2-7
75. Mokae F.B. Synthesis, charactarisation and application of nanoporous cyclodextrin polymers: dissertation submitted in fulfillment of requirement for the degree of Master of technology in chemistry in Faculty of Science. Department of Chemical Technology of University of Johanesburg, 2007: 71.
76. Pat. 20130012613USA, IC A1. Method for synthesizingcalixaren and/or cyclodextrin copolymers,terpolymers and tetrapolymers. M. Skiba. Publ. 01.10. 2013.
77. Moulahcene L., Kebiche-Senhadji O., Skiba M., Lahiani-Skiba M., Oughlis-Hammache F., Benamor M. Cyclodextrin polymers for ibuprofen extraction in aqueous solution: Recovery, separation, and characterization. Desalination Water Treat. 2016, 57: 11392–402. https://doi.org/10.1080/19443994.2015.1048734
78. Zhao D., Zhu C., Tian Z., Shon X. Synthesis and properties of water-insoluble b-cyclodextrin polymer cross linked by citric acid with PEG-400 as modifier. Carbohydrate Polymers. 2009, 78, no. 1: 125–130. https://doi.org/10.1016/j.carbpol.2009.04.022
79. Li F., Sun X., Zhang H., Li B., Gan F. Pyromellitic dianhydride-modified в-cyclodextrin microspheres for Pb(II) and Cd(II) adsorption. J. Appl. Polym. Sci. 2007, 105: 3418–3425. https://doi.org/10.1002/app.26376
80. Flores J., Jimenez V., Belmar J., Mansilla H.D., Alderete J.B. Inclusion Complexation of Phenol Derivatives with a b-Cyclodexrtin Based Polymer. J. Incl. Phenom. Macrocycl. Chem. 2005, 53, no. 1–2: 63–68. https://doi.org/10.1007/s10847-005-0994-2
81. Berto S., Bruzzoniti M. C., Cavalli R ., Perrachon D., Prenesti E., Sarzanini C., Trotta F., Tumiatti W. Synthesis of new ionic b-cyclodexrtin polymers and characterization of their heavy metals retention. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, no. 1–4: 631–636. https://doi.org/10.1007/s10847-006-9273-0
82. Berto S., Bruzzoniti M. C., Cavalli R ., Perrachon D., Prenesti E., Sarzanini C., Trotta F., Tumiatti W. Highly cross-linked ionic b-cyclodexrtin polymers and their ineraction with heavy metals. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, no. 1–4: 637–643. https://doi.org/10.1007/s10847-006-9270-3
83. Riabov S.V., Kobylinskyy S.N., Ostashko V.V., Kercha Yu.Yu. Synthesis of novel carboxylic polymers based on b-cyclodextrin and their sorption properties. Reports of the National Academy of Sciences of Ukraine. 2010, no. 4.:150–155.
84. Riabov S.V., Boyko V.V., Bortnitskiy V.I., Dmitrieva T.V., Kobylinskyy S.N., Ostashko V.V., Kercha Yu.Yu. Structure peculiarities of derivatives based on b-cyclodextrin and trimellitic anhydride chloride Ukr. Chem. J. 2011, 77, no. 3: 48–53.
85. Babich I.V. Synthesis, structure and properties of polymers based on cyclodextrin and its derivatives. Thesis. for scientific degree of Ph.D. Kyiv. 2013: 130.
86. Khmelnitsky R.A., Lukashenko I.M., Brodsky E.S. Pyrolytic mass spectrometry of high molecular compounds. M.: Chemistry,1980: 280.
87. Boyko V.V., Riabov S.V., Sinelnikov S.I., Babych I.V., Dmitrieva T.V., Laptiy S.V., Bortnitskiy V.I., Komliakova O.M., Kercha Yu.Yu. Synthesis and investigation of water-soluble b-cyclodextrin based polymers. Polym. j. 2012, 34, no. 1:81–85.
88. Riabov S.V., Shtompel V.I., Kercha Yu.Yu., Lebedev A.F. Chemical formation and structure of urethane-containing polymers based on b-cyclodextrin. Polym. j. 2005, 27, no. 1: 40–44.
89. Riabov S.V., Boyko V.V., Kobrina L.V., Dmitrieva T.V., Bortnitskiy V.I., Laptiy S.V., Kercha Yu.Yu. Studying of urethane-containing composites by b-cyclodextrin. Polym. j. 2006, 28, no. 3: 187–194.
90. Riabov S.V., Boyko V.V., Bortnitskiy V.I., Kobrina L.V., Dmitrieva T.V., Kercha Yu.Yu. Heat oxygen ageing of polyurethane composites fuctionalized by b-cyclodextrin. Polym. j. 2007, 29, no. 3: 186–190.
91. Bibby D. C., Davies N. M., Tucker I.G. Poly(acrylic acid) microspheres containing b-cyclodextrin: loading and in vitro release of two dyes. International J. of Pharmaceutics. 1999, 187, no. 2: 243–250. https://doi.org/10.1016/S0378-5173(99)00190-8
92. Nozaki T., Maeda Y., Kitano H.Cyclodextrin gels which have a temperature responsiveness. J. of Polym. Sci. Part A, Polym. Chem. 1997, 35, no. 8: 1535–1541. https://doi.org/10.1002/(SICI)1099-0518(199706)35:8<1535::AID-POLA22>3.0.CO;2-7
93. Paradossi G., Chiessi E., Cavalieri F., Mosconea D., Crescenzia V. Networks based on chitosan and oxidized cyclodextrin – II. Structural and catalytic features of a copper (II)-loaded network. Polymer Gels and Networks. 1997, 5, no. 6: 525–540. https://doi.org/10.1016/S0966-7822(97)00026-9
94.Van Dijk M., Rijkers D. T. S., Liskamp R. M. J., Van Nostrum C.F., Hennink W.E. Synthesis and Applications of Biomedical and Pharmaceutical Polymers via Click Chemistry Methodologies. Bioconjugate Chemistry. 2009, 20, no. 11: 2001–2016. https://doi.org/10.1021/bc900087a
95. Ryabov S.V., Shtompel V.I., Maslyuk A.F., Kercha Yu.Yu., Laptiy S.V. Synthesis and structure of copolymers based on butyl methacrylate and b-cyclodextrin Voprosy khimii i khimicheskoi tekhnologii. 2005, no. 5: 107–112.
96. Ryabov S.V., Kercha Yu.Yu., Laptiy S.V., Maslyuk A.F., Kercha S.F., de Namor A.D. Photochemical synthesis of b-cyclodextrin–based copolymers. Reports of the National Academy of Sciences of Ukraine. 2005, no. 9: 159–165.
97. Ryabov S.V., Shtompel V.I., Maslyuk A.F., Kercha Yu.Yu., de Namor A.D. Copolymers based on butyl methacrylate and b-cyclodextrin: Synthesis and structure. Polym. Sci. Series A. 2006, 48, no. 4: 589–599. https://doi.org/10.1134/S0965545X06040043
98. Pat. 5 357 012 USA, ICC08F 251/00 (20060101); B01J 20/26 (20060101). Water-insoluble cyclodextrinpolymers and processes for their preparation. P. Nussstein, G. Staudinger, F.-H. Kreuzer, W. Schmitt-Sody. Publ. 18.10.1994.
99. Janus L., Crini G., El-Rezzi V., Morcelleta M., Cambiaghib A.,Torri G.,Naggi A.,Vecchi C. New sorbents containing beta-cyclodextrin. Synthesis, characterization, and sorption properties. Reactive & Functional Polymers. 1999, 42, no. 3: 173–180. https://doi.org/10.1016/S1381-5148(98)00066-2
100. Pat. 10 259 202 Japan, IClC08B 37/16. Production of (meth) acrylic ester of cyclodextrin and (meth)acrylic ester of cyclodextrin. M. Masayuki, U. Misao. Publ. 29.09.1998.
101. Pat.03-221502 Japan,IC C08B 37/16. Synthesis of cyclodextrin polymer and production of cyclodextrin film. Y. Masanobu. Publ. 30.09.1991.
102. Siemoneit U., Schmitt C., Alvarez-Lorenzo C.,Luzardo A., Otero-Espinar F.,Concheiro A.,Blanco-Mendez J. Acrylic cyclodextrin hydrogels with enhanced drug loading and sustained release capability. International J. of Pharmaceutics. 2006, 312, no. 1–2: 66–74. https://doi.org/10.1016/j.ijpharm.2005.12.046
103. LiuY.-Y., FanX.-D., HuH., Tang Z.-H. Release of Chlorambucil from Poly(N-isopropylacrylamide) Hydrogels with b-Cyclodextrin Moieties. Macromolecular Bioscience. 2004, 4, no. 8: 729–736. https://doi.org/10.1002/mabi.200400037
104. Opanasenko O.A., Riabov S.V., Sinelnikov S.I Synthesis and properties stitched b-cyclodextrin-containing polymers and application to photocatalysis processes. Ukr. Chem. J. 2014, 80, no. 5–6: 58–63.
105. Opanasenko O.A., Riabov S.V., Sinelnikov S.I, Kercha Yu.Yu. Cyclodextrin-containing copolymers-synthesis, properties and applications to photocatalysis processes. Reports of the National Academy of Sciences of Ukraine. 2014, no. 8: 103–108.
106. Radchenko O. A. Synthesis and properties of cyclodextrin-containing oligomers and polymers and their impact on processes of environmental pollutants photocatalytic degradation. Thesis for scientific degree of Ph.D. Kyiv, 2015. Manuscript.
107. Opanasenko O.A., Riabov S.V., Sinelnikov S.I Synthesis and properties titanium dioxide by the b-cyclodextrin-containing polymers. Ukr. chem. J. 2015, 81, no. 7: 68–73.
108. Opanasenko O.A., Riabov S.V., Sinelnikov S.I, Boyko V.V., Bortnitskiy V.I. Synthesis and properties titanium dioxide by the b-cyclodextrin-containing polymers applying pyrolysis mass spectrometry. Polym. J. 2015, 37, no. 1: 54–59. https://doi.org/10.15407/polymerj.37.01.054
109. Opanasenko O.A., Boyko V.V., Sinelnikov S.I, Riabov S.V. The effect of UV-radiation on chemical transformations of b-cyclodextrin in the presence of titanium dioxide. Polym. J. 2014, 36, no. 1: 98–101.
110. Kawano S., KidaT., MiyawakiK., NoguchiY., Kato E., Nakano T., Akashi M. Cyclodextrin polymers as highly effective adsorbents for removal and recovery of polychlorobiphenyl (PCB) contaminants in insulating oil. Environ. Sci. Technol., 2014, 48, no. 14: 8094–8100. https://doi.org/10.1021/es501243v
111. Harada A., Takashima Y., Nakahata M. Supramolecular polymeric materials via cyclodextrin–guest interactions. Acc. Chem. Res. 2014, 47, no. 7: 2128–2140. https://doi.org/10.1021/ar500109h
112. Simoesa S.M.N., Veiga F., Ribeiro A.C.F., Figueiras A.R., Taboada P., Concheiro A., Alvarez-Lorenzoc C. Supramolecular gels of poly-a-cyclodextrin and PEO-based copolymers for controlled drug release. Europ. J. of Pharmaceutics and Biopharmaceutics, 2014, 87, no. 3: 579–588. https://doi.org/10.1016/j.ejpb.2014.04.006
113. Moulahcene L., .Skiba M, Senhadji O., Milon N., Benamor M., Lahiani-Skiba M. Inclusion and removal of pharmaceutical residues from aqueous solution using water-insoluble cyclodextrin polymers. Chem.Engineering Res. and Design. 2015, 97: 145–158. https://doi.org/10.1016/j.cherd.2014.08.023
114. Wintgens V., Lorthioir C., Dubot P., Sebille B., Amiel C. Cyclodextrin/dextran based hydrogels prepared by cross-linking with sodium trimetaphosphate. Carbohudrate Polymers. 2015, 132: 80–88. https://doi.org/10.1016/j.carbpol.2015.06.038
115. Peng K.,Chen C.,Pan W.,Liu W.,Wang Z.,Zhu L. Preparation and properties of b-cyclodextrin/4,42 -diphenylmethane diisocyanate/polyethylene glycol (b-CD/MDI/PEG) crosslinking copolymers as polymeric solid–solid phase change materials. Solar Energy Materialsand Solar Cells. 2016, 145, no. 3: 238–247. https://doi.org/10.1016/j.solmat.2015.10.031
116. Euvrard E., Morin-Crini N., Druart C., BugnetJ., Martel B., Cosentino C., Moutarlier V., Crini G.Cross-linked cyclodextrin-based materialfor treatment of metals and organicsubstancespresentin industrial discharge waters. Beilstein J. Org. Chem. 2016; 12: 1826–1838. https://doi.org/10.3762/bjoc.12.172
117. Alsbaiee A., Smith B. J., Xiao L.,Ling Y., Helbling D.E., Dichtel W.R.Rapid removal of organic micropollutants from waterby a poros b-Cyclodextrin polymer. Nature. 2016, 529: 190–194. https://doi.org/10.1038/nature16185
118. Tabary N., Garcia-Fernandez M. J., Danede F., Descamps M., Martel B., Willart J.-F. Determination of the glass transition temperature of cyclodextrin polymers. Carbohudrate Polymers. 2016, 148: 172–180. https://doi.org/10.1016/j.carbpol.2016.04.032
119. Gonzalez-Gaitano G., Ramon Isasi J., Velaz I., Zornoza A. Drug carrier systems based oncyclodextrin supramolecularassemblies and polymers: present and perspectives. Current Pharmaceutical Design. 2017, 23, no. 3: 411–432.
120. Jiang Y., Liu B., Xu J., Pan K., Hou H., Hu J., Yang J. Cross-linked chitosan/b-cyclodextrin composite for selective of methyl orange: Adsorption performance and mechanism. Carbohudrate Polymers. 2018, 182: 106–114. https://doi.org/10.1016/j.carbpol.2017.10.097
121. Shen P., Qiu L. Dual-responsive recurrent self-assembly of a supramolecular polymer based on thehost–guest complexation interaction between b-cyclodextrin and azobenzene. New J. Chem. 2018, 42: 3593–3601. https://doi.org/10.1039/C7NJ05042A
122. Zhou Y., Hu Y., Huang W., Cheng G., Cui C., Lu J. A novel amphoteric b-cyclodextrin-based adsorbent for simultaneous A novel amphoteric b-cyclodextrin-based adsorbent for simultaneous removal of cationic/anionic dyes and bisphenol A. Chem. Engineering J. 2018, 341: 47–57. https://doi.org/10.1016/j.cej.2018.01.155
123. Fang Y., Yang Z., Zhang X., Ji H. Synergistic catalytic oxidation of cinnamaldehydes by poly(vinyl alcohol)functionalized b-cyclodextrin polymer in CaO2/HCO3-system. Supramolecular Chemistry. 2018, 30, no. 2: 134–145. https://doi.org/10.1080/10610278.2017.1371719
124. Karpkird T., Khunsakorn R., Noptheeranuphap C., Midpanon S. Inclusion complexes and photostability of UV filters and curcuminwith beta-cyclodextrinpolymers: effect on cross-linkers. J. of Inclusion Phenomena and Macrocyclic Chemistry. 2018. 90: 1–9.
125. Li Y., Zhen W. Preparation and Performance of Poly(Lactic Acid)-g-Cyclodextrin Inclusion Complex-Poly(Lactic Acid) Multibranched Polymers by the Extrusion Process. Polymer-Plastics Technology and Engineering. 2018, 57, no. 9: 836–849. https://doi.org/10.1080/03602559.2017.1354224