2018 (3) 4
https://doi.org/10.15407/polymerj.40.03.166
Dextran-silica hybrid materials: production, adsorption, thermal transformations and structure of the adsorption layer
T.V. Kulik
O.O. Chuiko Institute of Surface Chemistry NAS of Ukraine
17, General Naumov str., Kyiv, 03164, Ukraine; tanyakulyk@i.ua
Polym. J., 2018, 40, no. 3: 166-178
Section: Structure and properties.
Language: Ukrainian.
Abstract:
The paper is devoted to the studying of the interaction of biocompatible carbohydrate polymer – dextran with the nanosilica surface, investigation of adsorbed polymer layer structure and influence of the adsorption on the dextran thermochemical properties using adsorption methods of analysis, IR-spectroscopy, analysis of P/T-curves and temperature-programmed desorption mass spectrometry (TPD MS). The adsorption/desorption processes of dextran on the nanosilica surface was investigated. The main products formed during pyrolysis of dextran in the condensed state are the compounds of consecutive elimination of one, two and three water molecules from the monomeric unit (glucose): levoglucosan, dianhydro derivatives and levoglucosenone. The corresponding ions in the mass spectra of volatile pyrolysis products – m/z 162, 144, 126, can be considered as key markers in the pyrolysis of natural polysaccharides based on the monomeric units of glucose. In addition to derivatives of the pyran series, derivatives of the furan series are observed: methylfurfural, hydroxymethylfurfural, furfural, etc. Pyrolysis on the silica surface does not lead to the formation of levoglucosan and dianhydro derivatives. This is due to the formation of adsorption complexes of dextran then their chemisorption upon heating with the formation of grafted ether groups and their subsequent thermal degradation at Tmax~380 °C. That is why there are two stages of pyrolysis of adsorbed dextran (Stage I – Tmax~300 °C and Stage II – Tmax ~380 °C) which relate to the pyrolysis of non-connected segments of adsorbed dextran (loops, trains) and segments directly connected to the nanosilica surface. Approach for the estimation of p parameter value based on TPD MS data was suggested. The correlation of adsorbed dextran amount and p parameter value was obtained. It was revealed that with the increasing of dextran amount the p parameter decreases from ~1 to ~0,6.
Keywords: pyrolysis, levoglucosenone, levoglucosan, methylfurfural, thermo-programmed desorption mass spectrometry.
References
1. Кasemo B. Biological surface science. Surface Science. 2002. 500: 656–677.
2. Khimiya privitykh poverkhnostnykh soyedineniy /Pod red. G.V.Lisichkina. M.: FIZMATLIT, 2003: 592.
3. Ha C.S., Gardella J. A Jr. Surface Chemistry of Biodegradable Polymers for Drug Delivery Systems. Chem. Rev. 2005. 105, no. 11: 4205–4232. https://doi.org/10.1021/cr040419y
4. Huang G., Mei X., Xiao F., Chen X., Tang Q., Peng D. Applications of Important Polysaccharides in Drug Delivery. Curr. Pharm. Des. 2015. 21, no. 25: 3692-6. https://doi.org/10.2174/1381612821666150109144613
5. Huang G., Chen Y., Li Y., Huang D., Han J., Yang M. Two Important Polysaccharides as Carriers for Drug Delivery. Mini Rev. Med. Chem. 2015. 15, no. 13: 1103-9. https://doi.org/10.2174/1389557515666150709115945
6. Lin Z., Li J., He H., Kuang H., Chen X., Xie Z., Jing X., Huang Y. Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Adv. 2015. 5: 9546–9555. https://doi.org/10.1039/C4RA15663C
7. Vittorio O., Voliani V., Faraci P., Karmakar B., Iemma F., Hampel S., Kavallaris M., Cirillo G. Magnetic Catechin–Dextran conjugate as targeted therapeutic for pancreatic tumour cells. J. Drug Target. 2014. 22, no. 5: 408–415. https://doi.org/10.3109/1061186X.2013.878941
8. Lawaczeck R., Bauer H., Frenzel T., Hasegawa M., Ito Y., et al. Magnetic iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Acta Radiol. 1997. 38: 584–597.
9. Chen S. Polymer coated iron oxide nanoparticle for biomedical imaging. Massachusetts Institute of Technology. PhD dissertation, Massachusetts Institute of Technology, 2010.
10. De Sousa Delgado A., Leonard M., Dellacherie E. Surface Properties of Polystyrene Nanoparticles Coated with Dextrans and Dextran”PEO Copolymers. Effect of Polymer Architecture on Protein Adsorption. Langmuir. 2001. 17, no. 14: 4386–4391. https://doi.org/10.1021/la001701c
11. Kumari A., Yadav S.K., Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 2010. 75: 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001
12. Thambi T.,You D.G., Han H.S., Deepagan V.G., Jeon S.M., Suh Y.D., Choi K.Y., Kim K., Kwon I.C., Yi G.R., Lee J.Y., Lee D.S., Park J.H. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery. Adv. Healthc. Mater. 2014. 3, no. 11: 1829–1838. https://doi.org/10.1002/adhm.201300691
13. Foerster F., Bamberger D., Schupp J., Weilbacher M., Kaps L., Strobl S., Radi L., Diken M., Strand D., Tuettenberg A., Wich P.R., Schuppan D. Dextran-based therapeutic nanoparticles for hepatic drug delivery. Nanomedicine. 2016. 11, no. 20: 2663–2677. https://doi.org/10.2217/nnm-2016-0156
14. Bisht S., Maitra A. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009. 1: 415–425. https://doi.org/10.1002/wnan.43
15. Mashkovskiy M.D. Lekarstvennyye sredstva. M: Meditsina, 2002. v 2-kh tomakh: 608.
16. Kulyk T.V., Palyanytsya B.B., Borodavka T.V., Borysenko M.V. Supramolecular structures of chitosan on the surface of fumed silica. A.P. Shpak, P.P. Gorbyk (eds.) in Nanomaterials and Supramolecular Structures, Springer, 2009: 259–268. https://doi.org/10.1007/978-90-481-2309-4_21
17. Fleer G.J., Cohen Stuart M.A., Scheutjens J.M.H.M., Cosgrove T., Vincent B. Polymers at Interfaces. London. Chapman Hall, 1993: 502.
18. Lipatov Y.S., Sergeeva L.M. Adsorption of Polymers. Kyiv: Naukova dumka, 1972: 195.
19. Kulyk T.V., Podust T.V., Palianytsia B.B. Supramolekuliarni kompleksy yod-khitozan v rozchyni ta na poverkhni kremnezemu. Polimernyi zhurnal. 2017. 39, no. 4: 241–247.
20. Kulyk T.V., Podust T.V., Palianytsia B.B., Azizova L.R., Terets M.I., Barvinchenko V.M., Mykhalovska L.I. Vplyv modyfikuvannia poverkhni kremnezemu polisakharydamy na yoho sorbtsiinu zdatnist po vidnoshenniu do rutozydu venorutonu. Poverkhnost. 2015. 7, no. 22: 147–160.
21. Czernik S. and Bridgwater A. V. Overview of Applications of Biomass Fast Pyrolysis Oil Energy & Fuels. 2004. 18: 590–598.
22. Bridgwater A. V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy. 2012. 38: 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
23. Pochinok Kh.N. Metodi biokhimicheskogo analiza. Kiyev: Naukova dumka, 1976: 334.
24. Kulik T.V. Use of TPD-MS and linear free energy relationships for assessing the reactivity of aliphatic carboxylic acids on a silica surface. J. Phys. Chem. C. 2012. 116: 570–580. https://doi.org/10.1021/jp204266c
25. Parfitt G.D., Rochester C.H. Adsorption from Solution at the Solid/Liquid Interface. London: Academic Press, 1983: 416.
26. Novakovskiy D.J., Jones J.M. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. J. Anal. Appl. Pyrol. 2008. 83: 12–25. https://doi.org/10.1016/j.jaap.2008.05.007
27. Novakovskiy D.J., Woodbridge C.R., Jones J.M. Phosphorus catalysis in the pyrolysis behaviour of biomass. J. Anal. Appl. Pyrol. 2008. 83: 197–204. https://doi.org/10.1016/j.jaap.2008.08.003
28. Nanda S., Mohanty P., Kozinski J.A., Dalai A.K. Physico-Chemical Properties of Bio-Oils from Pyrolysis of Lignocellulosic Biomass with High and Slow Heating Rate. Energy and Environment Research. 2014. 21, no. 4: 21–32. https://doi.org/10.5539/eer.v4n3p21
29. Ohnishi A., Kato K., Takagi E. Curie-Point Pyrolysis of Cellulose. Polymer J. 1975. 7: 431–437. https://doi.org/10.1295/polymj.7.431
30. Shafizadeh F., Fu Y.L. Pyrolysis of Cellulose. Carbohydr. Res. 1973. 29: 113–122. https://doi.org/10.1016/S0008-6215(00)82074-1
31. Halpern Y., Riffer R., Broido A. Levoglucosenone (1,6-Anhydro-3,4-dideoxy-Δ3-β-D-Pyranosen-2-one). A Major Product of the Acid-Catalyzed Pyrolysis of Cellulose and Related Carbohydrates. J. Org. Chem. 1973. 38: 204–209. https://doi.org/10.1021/jo00942a005
32. Lu Q., Zhang X.M., Zhang Z.B., Zhang Y., Zhu X.F., Dong C.Q. Catalytic fast pyrolysis of cellulose mixed with sulfated titania to produce levoglucosenone: Analytical Py-GC/MS study. BioResources. 2012. 17: 2820–2834.
33. Zhou X., Nolte M.W., Mayes H. B., Shanks B.H., Broadbelt L.J. Experimental and Mechanistic Modeling of Fast Pyrolysis of Neat Glucose-Based Carbohydrates. 1. Experiments and Development of a Detailed Mechanistic Model. Ind. Eng. Chem. Res. 2014. 53: 13274–13289. https://doi.org/10.1021/ie502259w
34. De Bruyn M., Fan J., Budarin V.L., Macquarrie D.J., Gomez L.D., Simister R., Farmer T.J., Raverty W.D., McQueen-Mason S.J., Clark J.H. A new perspective in bio-refining:levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides. Energy Environ. Sci. 2016. 9: 2571–2574. https://doi.org/10.1039/C6EE01352J
35. M S Miftakhov, F A Valeev, I N Gaisina, Levoglucosenone: the properties, reactions, and use in fine organic synthesis, Russ. Chem. Rev. 1994. 63, no. 10: 869–882. https://doi.org/10.1070/RC1994v063n10ABEH000123
36. Kulyk T.V., Halahan N.P., Pokrovskyi V.O. Mas-spektrometrychne doslidzhennia termolizu tsukriv. Farmatsevt. zhurn. 1997. No. 2: 76–79.
37. Kulyk T.V. Mas-spektrometriia vuhlevodnykh frahmentiv – terminalnykh hrup retseptornykh molekul v adsorbovanomu na poverkhni vysokodyspersnoho kremnezemu ta kondensovanomu stanakh. Dysertatsiia … kand.khim.nauk. Kyiv, 2000: 135.
38. Keri F., Sandberg R. Uglublennyy kurs organicheskoy khimii: Kniga vtoraya. Reaktsii i sintezy. Pod red. V.M. Potapova. M.: Khimiya, 1981: 456.
39. Tertykh V.A. Belyakova L.A. Khimicheskiye reaktsii s uchastiyem poverkhnosti kremnezema. Kiyev: Naukova dumka, 1991: 264.