2018 (4) 1

https://doi.org/10.15407/polymerj.40.04.216

Unsaturated esters and polymeric materials on their basis of medical applications

 

T.V. Rudenchyk, R.A. Rozhnova, N.A. Galatenko

 

Institute of Macromolecular Chemistry of NAS of Ukraine

48 Kharkivske shausse, Kyiv, 02160, Ukraine

 

Polym. J., 2018, 40, no. 4: 216-229.

 

Section: Review.

 

Language: Ukrainian.

 

Abstract:

 

The review is devoted to unsaturated esters with double bundles of fumaric acid, in particular to propylene fumarates, which are capable to reaction of copolymerization with the formation of biodegradable polymer materials as perspective polymeric matrices for release of substances drugs. Synthesis of propylene fumarates and polymers on their basis attracts the attention of many scientists of the world and is relevant. The methods of synthesis, purification, and also the influence of the choice of reagents, catalysts, inhibitors and reaction conditions on the final properties of propylene fumarates are presented. The creation of biopolymers on their basis with the use of different monomers, different methods of initiation, and application in medical practice has been demonstrated. It is shown that polymer materials based on propylene fumarates are biocompatible, capable to prolonged release of substances drugs, are capable to biodegradation, causing their applications without repeated surgical intervention for removal. They are perspective materials and are suitable for use as implantable materials in reconstructive surgery.

 

Keywords: poly(propylene fumarate), copolymerization, biodegradation, biocompatibility, orthopedics, osteogenesis.

 

References

1. Volova T.G., Shishatskaia E.I., Mironov P.V. Materialy dlia meditsiny, kletochnoy i tkanevoy inzhenerii. Кrasnoiarsk: IPK SFU, 2009: 262 [Rossia].
2. Kasper F.K., Tanahashi K., Fisher J.P., Mikos AG. Synthesis of Poly(Propylene Fumarate). Nature Protocols, 2009, 4, no. 4: 518 – 525.
3. He S., Timmer M.D., Yaszemski M.J., Yasko A.W., Engel P.S., Mikos A.G. Synthesis of biodegradable poly(propylene fumarate) networks with poly(propylene fumarate)–diacrylate macromers as crosslinking agents and characterization of their degradation products. Polymer, 2001, 42, no. 3: 1251″1260.
4. Westbrook E.G. Bone Tissue Engineering Incorporating Poly(Propylene Fumarate) Composites: A Mini Review. Nano LIFE, 2016, 6, no. 3-4:1642011-1 – 1642011-10.
5. Peter S.J., Yaszemski M.J., Suggs L.J., Payne R.G., Langer R., Hayes W.C., Unroe M.R., Alemany L.B., Engel P.S., Mikos A.G. Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. Journal of Biomaterials Science, Polymer Edition, 1997, 8, no. 11: 893–904.
6. Shung A.K., Timmer M.D., Jo S., Engel P.S., Mikos A.G. Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. J Biomater Sci Polym Ed, 2002, 13, no. 1: 95–108.
7. Timmer M.D., Carter C., Ambrose C.G., Mikos A.G. Fabrication of poly(propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds. Biomaterials, 2003, 24, no. 25: 4707–4714.
8. Cooke M.N., Fisher J.P., Dean D., Rimnac C., Mikos A.G. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater, 2003, 64B, no. 2: 65–69.
9. Fisher J.P., Vehof J.W.M., Dean D., van der Waerden J.P.C.M., Holland T.A., Mikos A.G., Jansen J.A. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Journal of Biomedical Materials Research, 2002, 59, no. 3: 547–556.
10. Hedberg E.L., Kroese-Deutman H.C., Shih C.K., Lemoine J.J., Liebschner M.A.K., Miller M.J., Yasko A.W., Crowther R.S., Carney D.H., Mikos A.G., Jansen J.A. Methods: a comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering. Tissue Engineering, 2005, 11, no. 9/10: 1356–1367.
11. Dean D., Topham N.S., Meneghetti S.C., Wolfe M.S., Jepsen K., He S., Chen J.E.-K., Fisher J.P., Cooke M., Rimnac C., Mikos A.G. Poly(propylene fumarate) and poly(DL-lactic-co-glycolic acid) as scaffold materials for solid and foam-coated composite tissue-engineered constructs for cranial reconstruction. Tissue Engineering, 2003, 9, no. 3: 495–504.
12. Dean D., Wolfe M.S., Ahmad Y., Totonchi A., Chen J.E.-K., Fisher J.P., Cooke M.N., Rimnac C.M., Lennon D.P., Caplan A.I., Topham N.S., Mikos A.G. Effect of transforming growth factor beta 2 on marrow-infused foam poly(propylene fumarate) tissue-engineered constructs for the repair of critical-size cranial defects in rabbits. Tissue Eng, 2005, 11, no. 5/6: 923–939.
13. Haesslein A., Ueda H., Hacker M.C., Jo S., Ammon D.M., Borazjani R.N., Kunzler J.F., Salamone J.C., Mikos A.G. Long-term release of fluocinolone acetonide using biodegradable fumarate-based polymers. Journal of Controlled Release, 2006, 114: 251–260.
14. Hacker M.C., Haesslein A., Ueda H., Foster W. J., Garcia C.A., Ammon D.M., Borazjani R.N., Kunzler J.F., Salamone J.C., Mikos A.G. Biodegradable fumarate-based drug-delivery systems for ophthalmic applications. Journal of Biomedical Materials Research Part A, 2009, 88 А, no. 4: 976″989.
15. Ueda H., Hacker M.C., Haesslein A., Jo S., Ammon D.M., Borazjani R.N., Kunzler J.F., Salamone J.C., Mikos A.G. Injectable, in situ forming poly(propylene fumarate)-based ocular drug delivery systems. J Biomed Mater Res A, 2007, 83, no. 3: 656–666.
16. Haesslein A., Hacker M.C., Mikos A.G. Effect of macromer molecular weight on in vitro ophthalmic drug release from photo-crosslinked matrices. Acta Biomaterialia, 2008, 4, no. 1: 1–10.
17. Hedberg E.L., Kroese-Deutman H.C., Shih C.K., Crowther R.S., Carney D.H., Mikos A.G., Jansen J.A. Effect of varied release kinetics of the osteogenic thrombin peptide TP508 from biodegradable, polymeric scaffolds on bone formation in vivo. J Biomed Mater Res A, 2005, 72, no. 4: 343–353.
18. Hedberg E.L., Tang A., Crowther R.S., Carney D.H., Mikos A.G. Controlled release of an osteogenic peptide from injectable biodegradable polymeric composites. Journal of Controlled Release, 2002, 84, no. 3: 137–150.
19. Temenoff J.S., Kasper F.K., Mikos A.G. Fumarate-based Macromers as Scaffolds for Tissue Engineering Applications, Vol. 3, Chapter 5. In book: Topics in Tissue Engineering. N. Ashammakhi, R.L. Reis, E. Chiellini, Oulu, 2007: 6.1–6.16.
20. Peter S.J., Suggs L.J., Yaszemski M.J., Engel P.S., Mikos A.G. Synthesis of poly(propylene fumarate) by acylation of propylene glycol in the presence of a proton scavenger, 1999, 10, no. 3: 363-373.
21. Diez-Pascual M., Dіez-Vicente A.L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interfaces, 2016, 8, no. 28: 17902–17914.
22. Dadsetan M., Guda T., Runge M.B., Mijares D., Le-Geros R.Z., LeGeros J.P., Silliman D.T., Lu L., Wenke J.C., Brown Baer P.R., Yaszemski M.J. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds. Acta Biomater, 2015, 18: 9-20.
23. Wang S., Lu L., Gruetzmacher J.A., Currier B.L., Yaszemski M.J. A Biodegradable and cross-linkable multiblock copolymer consisting of poly(propylene fumarate) and Poly(e-caprolactone): synthesis, characterization, and physical properties. Macromolecules, 2005, 38: 7358–7370.
24. Fisher J.P., Holland T.A., Dean D., Engel P.S., Mikos A.G. Synthesis and properties of photocrosslinked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed, 2001, 12, no. 6: 673–687.
25. Fisher J.P., Dean D., Mikos A.G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 2002, 23, no. 22: 4333″4343.
26. Timmer M.D., Ambrose C.G., Mikos A.G. Evaluation of thermal- and photo-crosslinked biodegradable poly(propylene fumarate)-based networks. J Biomed Mater Res. 2003, 66A, no. 4: 811–818.
27. Bondarenko P.A., Rozhnova R.A., Galatenko N.A. Synthesis of new oligooxypropylen fumarates and study of their photoinitiated copolymerization. Dopov. Nac. acad. nauk Ukr. (Rus.), 2011, no. 5: 135″140.
28. Patent 4,722,948A USА, Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone. J.E. Sanderson. Publ. 02.02.1988.
29. Bondarenko P.A., Rudenchik T.V., Rozhnova R.A., Galatenko N.A. Synthesis and methods of purification of oligooxypropylene fumarates. International Polymer Science & Technology, 2014, 41, no. 2: 57–60.
30. Fisher J.P., Dean D., Engel P.S., Mikos A.G. Photoinitiated polymerization of biomaterials. Annual Review of Materials Research, 2001, 31, no. 1: 171–181.
31. Peter S.J., Miller S.T., Zhu G., Yasko A.W., Mikos A.G. In vivo degradation of a poly(propylene fumarate)/в-tricalcium phosphate injectable composite scaffold. Journal of Biomedical Materials Research, 1998, 41, no. 1: 1–7.
32. Peter S.J., Kim P., Yasko A.W., Yaszemski M.J., Mikos A.G. Crosslinking characteristics of an injectable poly(propylene fumarate)/в-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. Journal of Biomedical Materials Research, 1999, 44, no. 3: 314″321.
33. Chang C-H, Liao T-C, Hsu Y-M, Fang H-W, Chen C-C, Lin F-H. A poly(propylene fumarate) – Calcium phosphate based angiogenic injectable bone cement for femoral head osteonecrosis. Biomaterials, 2010, 31: 4048–4055.
34. Shi X., Hudson J.L., Spicer P.P., Tour J.M., Krishnamoorti R., Mikos A.G. Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology, 2005, 16, no. 7: S531–S538.
35. He S.L., Yaszemski M.J., Yasko A.W., Engel P.S., Mikos A.G. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials, 2000, 21, no. 23: 2389-2394.
36. Behravesh E., Shung A.K., Jo S., Mikos A.G. Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate). Biomacromolecules, 2002, 3, no. 1: 153–158.
37. Lewandrowski K.U., Gresser J.D., Wise D.L., Trantolo D.J. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of oly(propyleneglycol-co-fumaric acid)-based cement implants in rats. Biomaterials, 2000, 21, no. 8: 757–764.
38. Kamel N.A., Abd-El-Messieh S.L., Mansour S.H., Iskander B.A., Khalil W.A., Abd-El Nour K.N. Biophysical properties of crosslinked poly(propylene fumarate)/ hydroxyapatite nanocomposites. Romanian Journal of Biophysics, 2012, 22, no. 3–4: 189–214,
39. Kamel N.A., Abou-Aiaad T.H., Iskander B.A., Khalil S.K.H., Mansour S.H., Abd-El-Messieh S.L., Abd-El-Nour K.N. Biophysical Studies on Bone Cement Composites Based on Polyester Fumarate. Journal of Applied Polymer Science, 2010, 116: 876–885.
40. Gao Q., Hu B., Ning Q., Ye C., Xie J., Ye J., Gao C. A primary study of poly(propylene fumarate)–2-hydroxyethyl methacrylate copolymer scaffolds for tarsal plate repair and reconstruction in rabbit eyelids. Journal of Materials Chemistry B, 2015, no. 3: 4052-4062.
41. Suggs L.J., West J.L., Mikos A.G. Platelet adhesion on a bioresorbable poly(propylene fumarate-co-ethylene glycol) copolymer. Biomaterials, 1999, 20: 683-690.
42. Suggs L.J., Payne R.G., Yaszemski M.J., Alemany L.B., Mikos A.G. Synthesis and Characterization of a Block Copolymer Consisting of Poly(propylene fumarate) and Poly(ethylene glycol). Macromolecules, 1997, 30: 4318-4323.
43. Suggs L.J., Mikos A.G. Development of Poly(Propylene Fumarate-co-Ethylene Glycol) as an Injectable Carrier for Endothelial Cells. Cell Transplantation, 1999, 8: 345-350.
44. Henslee A.M., Gwak D-H, Mikos A.G., Kasper F.K. Development of a biodegradable bone cement for craniofacial applications. J Biomed Mater Res Part A, 2012, 100 A, no. 9: 2252-2259.
45. Yan J., Li J.M., Runge M.B., Dadsetan M., Chen Q.S., Lu L.C., Yaszemski M.J. Cross-linking characteristics and mechanical properties of an injectable biomaterial composed of polypropylene fumarate and polycaprolactone co-polymer. J Biomat Sci Polym Ed, 2011, 22: 489–504.
46. Guo J., Liu X., Miller II A.L., Waletzki B.E., Yaszemski M.J., Lu L. Novel Porous Poly(propylene Fumarate-co-caprolactone) Scaffolds Fabricated by Thermally Induced Phase Separation. Journal of Biomedical Materials Research: Part A, 2017, 105, no. 1: 226-235.
47. Fang Z., Giambini H., Zeng H., Camp J.J., Dadsetan M., Robb R.A., An K-N, Yaszemski M.J., Lu L. Biomechanical Evaluation of an Injectable and Biodegradable Copolymer P(PF-co-CL) in a Cadaveric Vertebral Body Defect Model. Tissue engineering: Part A, 2014, 20, no. 5 and 6: 1096-1102.
48. Jayabalan M. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices. International Journal of Biomaterials, 2009, 2009.
49. Dэez-Pascual A.M., Dэez-Vicente A.L. Magnetic Fe3O4@poly(propylene fumarate-coethylene glycol) core–shell biomaterials. The Royal Society of Chemistry, 2017, 7, no. 17: 10221–10234.
50. Shahbazi S., Moztarzadeh F., G. Mir Mohamad Sadeghi, Jafari Y. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue. Materials Science and Engineering C, 2016, 69: 1201–1209.
51. Salarian M., Xu W.Z., Biesinger M.C., Charpentier P.A. Synthesis and characterization of novel TiO2-poly(propylene fumarate) nanocomposites for bone cementation. Journal of Materials Chemistry B, 2014, 2, no. 32: 5119–5310.
52. Pat. 6,753,358 B2 USА, A61L 27/00, A61L 27/18, C08L 67/06, C08L 67/00, C08F 002/50, C08F 022/00. Photocrosslinking of diethyl fumarate/poly(propylene fumarate) biomaterials. Fisher J.P., Mikos A.G. Publ. 22.06.2004.
53. Vehof J.W.M., Fisher J.P., Dean D., van der Waerden J.-P.C.M., Spauwen P.H.M., Mikos A.G.,. Jansen J.A. Bone formation in transforming growth factor beta-1 coated porous poly(propylene fumarate) scaffolds. Journal of Biomedical Materials Research, 2002, 60, no. 2: 241–251.
54. Haesslein A., Hacker M.C., Ueda H., Ammon D.M., Borazjani R.N., Kunzler J.F., Salamone J.C., Mikos A.G. Matrix modifications modulate ophthalmic drug delivery from photo-cross-linked poly(propylene fumarate)-based networks. Journal of Biomaterials Science, Polymer Edition, 2009, 20, no. 1: 49″69.
55. Parry J.A., Olthof M.G.L., Shogren K.L., Dadsetan M., Wijnen A.V., Yaszemski M., Kakar S. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation. Tissue Engineering: Part A, 2017, 23, no. 7-8: 1-7.
56. Wang S., Kempen D.H., Simha N.K., Lewis J.L., Windebank A.J., Yaszemski M.J., Lu L. Photo-cross-linked hybrid polymer networks consisting of poly(propylene fumarate) and poly(caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses. Biomacromolecules, 2008, 9: 1229-1241.
57. Wang K., Cai L., Hao F., Xu X., Cui M., Wang S. Distinct cell responses to substrates consisting of poly (е-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links. Biomacromolecules, 2010, 11: 2748-2759.
58. Wang S., Yaszemski M.J., Gruetzmacher J.A., Lu L. Photo-crosslinked poly(3-caprolactone fumarate) networks: Roles of crystallinity and crosslinking density in determining mechanical properties. Polymer, 2008, 49: 5692–5699.
59. Wang S., Yaszemski M.J., Knight A.M., Gruetzmacher J.A., Windebank A.J., Lu L. Photo-crosslinked poly(е-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations. Acta Biomaterialia, 2009, 5: 1531–1542.
60. Rudenchyk T.V., Rozhnova R.A., Galatenko N.A. Nechaeva L.Yu., Kiselova T.O. Elaboration of composite materials on the basis of oligooxypropylen fumarate, threeethylenglicol-dimethacrylate and N-vinylpyrrolidone, containing immunomodulator levamisole and research of dynamic its release. Naukovi Zapysky NaUKMa (Ukr.), 2015, 170: 53–58
61. Rudenchyk T.V., Rozhnova R.A., Galatenko N.A. Nechaeva L.Yu., Kiselova T.O. Synthesis of composite materials based on oligooxypropylene fumarate, triethylene glycol dimethacrylate, and styrene with prolonged release of levamisole. Dopov. Nac. acad. nauk Ukr. (Ukr.), 2016, no. 11: 78-86.
62. Rozhnova R.A., Galatenko N.A. Kulyesh D.V., Rudenchyk T.V., Kebuladze I.M. Properties of composite material with prolonged immunostimulation action as a potential bone implant. Plastychna, rekonstruktyvna i estetychna hirurgiia (Ukr.), 2016, no. 3-4: 56-66.
63. Rudenchyk T.V., Rozhnova R.A., Galatenko N.A. Nechaeva L.Yu. The effects of the model biological medium on the structure and properties of composite materials with levamisole and the dynamics of the release of a drug substance. Voprosy khimii i khimicheskoi tekhnologii (Ukr.), 2018, no. 5: 140-148.
Надійшла до редакції 10 жовтня 2018 р.