2018 (4) 2

https://doi.org/10.15407/polymerj.40.04.230

Electrical conductivity of polymer/carbon nanotubes nanocomposites at low temperatures

 

  1. Bardash1,2, G. Boiteux1, R. Grykien3, I. Gіowacki3, M. Pastorczak3, J. Ulanski3, A. Fainleib2

1Universite de Lyon, Lyon F-69003, France, Universite Lyon 1, F-69003 Villeurbanne, France, IMP CNRS UMR 5223, Ingenierie des Materiaux Polymeres, IMP@LYON1, F-69622 Villeurbanne, France

2Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

3Technical University of Lodz, Department of Molecular Physics

90-924 Lodz, Poland

 

Polym. J., 2018, 40, no. 4: 230-239.

 

Section: Structure and properties.

 

Language: English.

 

Abstract:

 

Electrical properties of two new types of polymer/multi-walled carbon nanotubes (MWCNTs) nanocomposites have been studied at very low temperature: thermoplastic Poly(butylene terephthalate)/MWCNTs, prepared by reactive blending of the mixture of cyclic butylene terephthalates and MWCNTs, and thermosetting Polycyanurate/MWCNT prepared by blending of dicyanate ester of bisphenol E monomer with MWCNT using sonication and subsequent curing. Dimensional characteristics and vibrational properties of MWCNTs were investigated by transmission electron microscopy and Raman spectroscopy. The results of conductivity measurements clearly evidence the presence of a percolation threshold (pc) at a very small weight fraction of the MWCNTs in the both polymer matrices: pc = 0,22 wt. % and pc = 0,38 wt. % for thermoplastic and thermosetting composites, respectively. The activation energies of conduction in the range 10 – 100 K are very low for all the samples (<0,001eV). It was found, that the temperature dependence of conductivity of the nanocomposites follows the fluctuation induced tunneling model and is weak enough to develop the use of such materials in electronic devices.

 

Keywords: nanocomposites, carbon nanotubes, electrical properties, poly(butylene terephthalate), polycyanurate networks.

 

References

  1. Spitalsky Z., Tasis D., Papagelis K., Galiotis C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010, 35: 357–401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  2. Bauhofer W., Kovacs J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. and Technol., 2009, 69: 1486-1498. https://doi.org/10.1016/j.compscitech.2008.06.018
  3. Kirkpatrick S. Percolation and conduction. Reviews of Modern physics, 1973, 45: 574-588. https://doi.org/10.1103/RevModPhys.45.574
  4. Applications of percolation theory. M. Sahimi (Ed.), London: Taylor & Francis, 1994: 258. ISBN 9781482272444.
  5. Grossiord N., Loos J., Regev O., Koning C.E. Toolbox for Dispersing Carbon Nanotubes into Polymers To Get Conductive Nanocomposites. Chem. Mater. 2006, 18: 1089-1099. https://doi.org/10.1021/cm051881h
  6. Tugrul Seyhan A., Gojny F.H., Tanoglu M., Schulte K. Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. European Polymer Journal Macromolecular Nanotechnology – Short commun., 2007, 43: 374-379.
  7. Fang Z., Wang J., Gu A. Structure and Properties of Multiwalled Carbon Nanotubes/Cyanate Ester Composites. Polym. Eng. Sci., 2006, 46: 670–679. https://doi.org/10.1002/pen.20487
  8. Mamunya Ye., Boudenne A., Lebovka N., Ibos L., Candau Y., Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. and Technol., 2008, 68: 1981–1988. https://doi.org/10.1016/j.compscitech.2007.11.014
  9. Brunelle D.J., Bradt J.E., Serth-Guzzo J., Takekoshi T., Evans T.L., Pearce E.J., Wilson P.R. Semicrystalline Polymers via Ring-Opening Polymerization: Preparation and Polymerization of Alkylene Phthalate Cyclic Oligomers. Macromolecules 1998, 31: 4782-4790. https://doi.org/10.1021/ma971491j
  10. Hakme C., Stevenson I., Maazouz A., Cassagnau P., Boiteux G., Seytre G. In situ monitoring of cyclic butylene terephtalate polymerization by dielectric sensing. J. Non-Cryst. Solids 2007, 353: 4362–4365. https://doi.org/10.1016/j.jnoncrysol.2007.04.051
  11. Hamano T., Yamamoto M., Matsuzono S., Noda K. Polybutylene Terephthalate, EP 1 731 546 A1, 2006.
  12. Chemistry and Technology of Cyanate Ester Resins. Hamerton I. (Ed.), Glasgow: Chaman & Hall, 1994: 254. ISBN 0 7514 0044 0.
  13. Thermostable Polycyanurates. Synthesis, Modification, Structure and Properties. Fainleib A. (Ed.), USA: Nova Science Publishers, Inc., 2010: 370. ISBN 978-1-60876-907-0.
  14. Bardash L., Boiteux G., Seytre G., Fainleib A. Conductive Polymer nanocomposites based on Poly(butylene terephthalate) and Multi-Walled Carbon Nanotubes, Polimernyy Zhurnal, 2010, 32: 51-55.
  15. Fainleib A., Bardash L., Boiteux G., Catalytic effect of carbon nanotubes on polymerization of cyanate ester resins, eXPRESS Polym. Lett., 2009, 3: 477-482. https://doi.org/10.3144/expresspolymlett.2009.59
  16. Ulanski J., Kryszewski M. Electrical conductivity in heterogeneous organic polymeric systems. Polish Journal of Chemistry 1995, 69: 651-673.
  17. Gibson R.F., Ayorinde E.O., Wen Y.F. Vibrations of carbon nanotubes and their composites: A review. Compos. Sci. and Technol. 2007, 67: 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031
  18. Dresselhaus M.S., Dresselhaus G., Saito R., Jorio A. Raman spectroscopy of carbon nanotubes. Physics Reports 2005, 409: 47-99. https://doi.org/10.1016/j.physrep.2004.10.006
  19. Hu G., Zhao C., Zhang S., Yang M., Wang Z. Low percolation thresholds of electrical conductivity and rheology in poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 2006, 47: 480–488. https://doi.org/10.1016/j.polymer.2005.11.028
  20. Lisunova M.O., Mamunya Ye.P., Lebovka N.I., Melezhyk A.V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J., 2007, 43: 949–958. https://doi.org/10.1016/j.eurpolymj.2006.12.015
  21. Stauffer D., Aharony A. Introduction to percolation theory. London: Taylor & Francis, 2014. ISBN 9781482272376. https://doi.org/10.1201/9781315274386
  22. McNally T., Potschke P., Halley P., Murphy M., Martin D., Bell S.E.J., Brennan G.P., Bein D., Lemoine P., Quinn J.P. Polyethylene multiwalled carbon nanotube composites. Polymer, 2005, 46: 8222-8232. https://doi.org/10.1016/j.polymer.2005.06.094
  23. Sheng P. Fluctuation-Induced tunneling conduction in disordered materials. Physical Review B 1980, 21: 2180-2195. https://doi.org/10.1103/PhysRevB.21.2180
  24. Kymakis E., Amaratunga G.A.J. Electrical properties of single-wall carbon nanotube-polymer composite films. J. Appl. Phys. 2006, 99: 084302, 1-7. https://doi.org/10.1063/1.2189931
  25. Kim H.M., Choi M.S., Joo J., Cho S.J., Yoon H.S. Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Physical Review B 2006, 74: 054202, 1-7. https://doi.org/10.1103/PhysRevB.74.054202
  26. Zhang R., Baxendale M., Peijs T, Universal resistivity-strain dependence of carbon nanotube/polymer composites. Physical Review B 2007, 76: 195433, 1-5. https://doi.org/10.1103/PhysRevB.76.195433
  27. Reich S, Thomsen C, Maultzsch J. Carbon nanotubes. Wiley-VCH, Darmstadt, Germany, 2004: 215. ISBN 9783527618040.
  28. Wilder J.W.G., Venema L.C., Rinzler A.G., Smalley R.E., Dekker C. Electronic structure of atomically resolved carbon nanotubes, Letters to Nature 1998, 391: 6662, 59-62. https://doi.org/10.1038/34139
  29. Yeletsky A.V. Transport properties of carbon nanotubes. Progresses in Physical Sciences 2009, 179 doi:10.3367/UFNr0179.200903a0225 in Russian
  30. Simsek Y., Ozyuzer L., Tugrul Seyhan A., Tanoglu M., Schulte K. Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. J. Mater. Sci., 2007, 42: 9689–9695. https://doi.org/10.1007/s10853-007-1943-9
  31. Ahmad K., Pan W. Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos. Sci. and Technol. 2009, 69: 1016-1021. https://doi.org/10.1016/j.compscitech.2009.01.015
  32. Li H.J., Lu W.G., Li J.J., Bai X.D., Gu C.Z., Multichannel Ballistic Transport in Multiwall Carbon Nanotubes Phys. Rev. Lett. 2005, 95: 086601, 1-4.

Надійшла до редакції 2 липня 2018 р.