2019 (1) 1

https://doi.org/10.15407/polymerj.41.01.004

Self-healing polymers: approaches of healing and their application

 

A.M. Fainleib, O.H. Purikova

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2019, 41, no. 1: 4-18

 

Section: Review.

 

Language: English.

 

Abstract:

 

 

Self-healing (S-H) polymers are a new class of smart materials with extended lifetimes that have the capability to repair themselves when they are damaged without the need for detection or repair by manual intervention of any kind. This paper reviews briefly the studies devoted to the development and characterization of S-H polymeric materials. All relevant approaches in preparation of such polymers can be devided into two groups: autonomic and non-autonomic. Autonomic healing are fully self-contained and requiring no external intervention of any kind, however this method of self-healing is also known as extrinsic because of presence of additional healing agent placed in reservoir in polymer material. Autonomic healing can be further divided into sub-categories based on the self-healing concept employed. The subcategories include: capsule systems and microvascular or fiber network-based systems. Non-autonomic healing are partially self-contained; healing capability is designed into the material, that is why this method is also named as intrinsic. But additional external stimuli such as heat or UV-radiation is required for the healing to occur in this method. Intrinsic self-healing polymer can be tailored to become chemically ‘sticky’ along break lines. Polymers can also be designed to respond to a variety of different energetic conditions, e.g. specific electromagnetic fields or bullet permeation. This paper also examines critically benefits and shortcomings of each example of approaches proposed to prepare the S-H systems. Emerging self-healing technologies designed to give polymeric materials the capability to arrest crack propagation at an early stage thereby preventing catastrophic failures will go a long way in helping to increase the scope of applications of these materials. Such techniques are very useful for repairing damage to satellites and spacecraft caused by high-speed debris. Another attractive range of application of S-H polymers observed in this review includes S-H coatings and adhesives. Finally, the challenges and research opportunities are highlighted.

 

Key words: smart materials, self-healing polymers, polymer composites, adhesives, coatings.

 

References

  1. Riefsnider K.L., Schulte K., Duke J.C. Long-term fatigue behavior of composite materials. ASTM Special Technical Publications, 1983, 813: 136–159. https://doi.org/10.1520/STP31820S
  2. Yuan Y. C., Yin T., Rong M. Z., ZhangM. Q. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review. eXPRESS Polym. Letters, 2008, 2, no. 4: 238-250. https://doi.org/10.3144/expresspolymlett.2008.29
  3. Blaiszik B, Kramer S, Olugebefola S, Moore J, Sottos N, White S. Self-healing polymers and composites. Annu Rev Mater Res, 2010, 40: 179–211. https://doi.org/10.1146/annurev-matsci-070909-104532
  4. Binder W.H. (ed.). Self-healing polymers: from principles to applications. – Weinheim: John Wiley & Sons, 2013: 425. ISBN: 978-3-527-33439-1. https://doi.org/10.1002/9783527670185
  5. Karger-Kocsis J. Self-healing properties of epoxy resins with poly (a-caprolactone) healing agent. Polym. Bull., 2016, 73, 3081–3093. https://doi.org/10.1007/s00289-016-1642-2
  6. Karger-Kocsis J., Mahmood H., Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mater. Sci, 2015, 73, 1–43. https://doi.org/10.1016/j.pmatsci.2015.02.003
  7. Yuan, Y.C., Yin, T., Rong, M.Z., Zhang, M.Q. Self healing in polymers and polymer composites. Concepts, realization and outlook: A review. Express Polym. Lett., 2008, 2, 238–250. https://doi.org/10.3144/expresspolymlett.2008.29
  8. Brown E.N., Sottos N.R., White S.R. Fracture testing of a self-healing polymer composite. Experimental Mechanics, 2002, 42, no. 4: 372–379. https://doi.org/10.1007/BF02412141
  9. Rule J.D., Sottos N.R., White S.R. Effect of microcapsule size on the performance of self-healing polymers. Polymer, 2007, 48, no. 12: 3520–3529. https://doi.org/10.1016/j.polymer.2007.04.008
  10. Blaiszik B.J., Sottos N.R., White S.R. Nanocapsules for self-healing materials. Composites Sci. and Technology, 2008, 68, no. 3-4: 978–986. https://doi.org/10.1016/j.compscitech.2007.07.021
  11. Andersson H., Keller M., Moore J., Sottos N., White S. Self healing polymers and composites. Self Healing Materials. Springer, Dordrecht, 2007, 100: 19–44. https://doi.org/10.1007/978-1-4020-6250-6_2
  12. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Brown E.N., Viswanathan S. Autonomic healing of polymer composites. Nature, 2001, 409: 794–797. https://doi.org/10.1038/35057232
  13. Trask R.S., Williams H.R., Bond I.P. Self-healing composite sandwich structures. Bioinspiration and Biomimetics, 2007, 2, no. 1: 1–9. https://doi.org/10.1088/1748-3182/2/1/P01
  14. Williams H.R., Trask R.S., Knights A.C., Williams E.R., Bond I.P. Biomimetic reliability strategies for self-healing vascular networks in engineering materials. J. Royal Soc. Interface, 2008, 5, no. 24: 735–747. https://doi.org/10.1098/rsif.2007.1251
  15. Williams H.R., Trask R.S., Weaver P.M., Bond I.P. Minimum mass vascular networks in multifunctional materials. J. Royal Soc. Interface, 2008, 5, no. 18: 55–65. https://doi.org/10.1098/rsif.2007.1022
  16. Toohey K.S., Sottos N.R., Lewis J.A., Moore J.S., White S.R. Self-healing materials with microvascular networks. Nature Materials, 2007, 6, no. 8: 581–585. https://doi.org/10.1038/nmat1934
  17. Williams H.R., Trask R.S., Bond I.P. Self-healing polymer composites: mimicking nature to enhance performance. Smart Materials and Structures, 2007, 16, no. 4: 1198–1207. https://doi.org/10.1088/0964-1726/16/4/031
  18. Aragon A.M., Wayer J.K., Geubelle P. H., Goldberg D.E., White S.R. Design of microvascular flow networks using multi-objective genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 2008, 197, no. 49-50: 4399–4410. https://doi.org/10.1016/j.cma.2008.05.025
  19. Norris C.J., White J.A.P., McCombe G., Chatterjee P., Bond I.P., Trask R.S. Autonomous stimulus triggered self-healing in smart structural composites. Smart Materials and Structures, 2012, 21, no. 9, Article ID 094027. https://doi.org/10.1088/0964-1726/21/9/094027
  20. Yang T., Wang C., Zhang J., He S., Mouritz A. Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching. Composites Science and Technology, 2012, 72, no. 12: 1396–1401. https://doi.org/10.1016/j.compscitech.2012.05.012
  21. Privman V., Dementsov A., Sokolov I. Modeling of self-healing polymer composites reinforced with nanoporous glass fibers. J of Computational and Theoretical Nanoscience, 2007, 4, no. 1: 190–193.
  22. Trask R.S., Williams G.J., Bond I.P. Bioinspired self-healing of advanced composite structures using hollow glass fibres. J. of the Royal Soc. Interface, 2007, 4, no. 13: 363–371. https://doi.org/10.1098/rsif.2006.0194
  23. Kousourakis A., Mouritz A.P. The effect of self-healing hollow fibres on the mechanical properties of polymer composites. Smart Materials and Structures, 2010, 19, no. 8, Article ID085021. https://doi.org/10.1088/0964-1726/19/8/085021
  24. Yin T., Rong M.Z., Wu J., Chen H., Zhang M.Q. Healing of impact damage in woven glass fabric reinforced epoxy composites. Composites A, 2008, 39, no. 9: 1479–1487. https://doi.org/10.1016/j.compositesa.2008.05.010
  25. Moll J.L., White S.R., Sottos N.R. A self-sealing fiber-reinforced composite. J. of Composite Materials, 2010, 44, no. 22: 2573–2585. https://doi.org/10.1177/0021998309356605
  26. Wu D.Y., Meure S., Solomon D. Self-healing polymeric materials: a review of recent developments. Prog. Polym. Sci., 2008, 33: 479–522. https://doi.org/10.1016/j.progpolymsci.2008.02.001
  27. Caruso M.M., Davis D.A., Shen Q.,Odom S.A., Sottos N.R., White S.R., Moore J.S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev., 2009, 109, no. 11: 5755–5798. https://doi.org/10.1021/cr9001353
  28. Wool R.P., O’Connor K.M. A theory crack healing in polymers. J. Appl. Phys., 1981, 52, no. 10: 5953–5963. https://doi.org/10.1063/1.328526
  29. Wool R.P. Self-healing materials: a review. Soft Matter. 2008. 4, no. 3: 400–418.
  30. Jud K., Kausch H.H. Load transfer through chain molecules after interpenetration at interfaces. Polym Bull., 1979, 1: 697–707. https://doi.org/10.1007/BF00255445
  31. Jud K., Kausch H.H., Williams J.G. Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci., 1981, 16: 204-210. https://doi.org/10.1007/BF00552073
  32. Tsangouri E., Aggelis D., van Hemlrijck D. Quantifying thermoset polymers healing efficiency: a systematic review of mechanical testing. Prog Polym Sci., 2015, 49-50: 154–174. https://doi.org/10.1016/j.progpolymsci.2015.06.002
  33. Pascault J.-P., Williams R.J.J. Epoxy Polymers: New Materials and Innovations, 2010: 1–12. ISBN: 978-3-527-62871-1
  34. Fejos M., Molnar K., Karger-Kocsis J. Epoxy/polycaprolactone systems with triple-shape memory effect: electrospun nanoweb with and without graphene versus co-continuous morphology. Materials, 2013, 6, no. 10: 4489–4504. https://doi.org/10.3390/ma6104489
  35. Wei H, Yao Y, Liu Y, Leng J. A dual-functional polymeric system combining shape memory with self-healing properties. Compos B., 2015, 83: 7–13. https://doi.org/10.1016/j.compositesb.2015.08.019
  36. Yao Y., Wang J., Lu H., Xu B., Fu Y., Liu Y., Leng J. Yao Y. et al. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater Struct, 2016, 25, no. 1: 015021. https://doi.org/10.1088/0964-1726/25/1/015021
  37. Karger-Kocsis J. Biodegradable polyester-based shape memory polymers: Concepts of (supra) molecular architecturing. Express Polym Lett., 2014, 8, no. 6: 397–412. https://doi.org/10.3144/expresspolymlett.2014.44
  38. Siddhamalli S.K. Toughening of epoxy/polycaprolactone composites via reaction induced phase separation Polym Compos., 2000, 21: 846–855. https://doi.org/10.1002/pc.10239
  39. Rotrekl J., Matмjka L., Zhigunov A., Kelnar I. Epoxy/PCL nanocomposites: Effect of layered silicate on structure and behavior. Polymer Letters, 2012, 6, no. 12: 975–986. https://doi.org/10.3144/expresspolymlett.2012.103
  40. Luo X., Ou R., Eberly D.E., Singhal A., Viratyaporn W., Mather P.T. A thermoplastic/thermoset blend exhibiting thermal mending and reversible adhesion. ACS Appl Mater Interface, 2009, 1: 612–620. https://doi.org/10.1021/am8001605
  41. Chen X., Wudl F., Mal A.K., Shen H., Nutt S.R. New thermally remendable highly cross-linked polymeric materials. Macromolecules, 2003, 36, no. 6: 1802–1807. https://doi.org/10.1021/ma0210675
  42. Kwok N., Hahn H.T. Resistance heating for self-healing composites. J of Composite Materials, 2007, 41, no. 13: 1635–1654. https://doi.org/10.1177/0021998306069876
  43. Park J.S., Takahashi K., Guoet Z., Wang Y., Bolanos Ed, Hamann-Schaffner C., Murphy E., Wudl F., Hahn H.Th. Towards Development of a Self-Healing Composite using a Mendable Polymer and Resistive Heating. J. of Composite Materials, 2008, 42, no. 26: 2869–2881. https://doi.org/10.1177/0021998308097280
  44. Kalista Jr.S.J. Self-Healing of thermoplastic poly(Ethylene-Co-Methacrylic Acid) copolymers following projectile puncture. – Virginia Tech : [Ph.D.thesis], 2003.
  45. Kalista S.J., Ward T.C. Thermal characteristics of the self-healing response in poly (ethylene-co-methacrylic acid) copolymers . J of the Royal Society Interface, 2007, 4, no. 13: 405–411. https://doi.org/10.1098/rsif.2006.0169
  46. Varley R.J., Van der Zwaag S. Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polymer Testing, 2008, 27, no. 1: 11–19. https://doi.org/10.1016/j.polymertesting.2007.07.013
  47. Varley R. J., Van der Zwaag S. Autonomous damage initiated healing in a thermo responsive ionomer. Polymer International, 2010, 59, no. 8: 1031–1038. https://doi.org/10.1002/pi.2841
  48. Pingkarawat K., Wang C., Varley R., Mouritz A. Effect of mendable polymer stitch density on the toughening and healing of delamination cracks in carbon–epoxy laminates. Composites A, 2013, 50: 20–30. https://doi.org/10.1016/j.compositesa.2013.02.014
  49. Owen C.C. Magnetic induction for in-situ healing of polymeric material. – Virginia Tech.: [Ph.D.thesis], 2006.
  50. Wu D.Y., Meure S., Solomon D. Self-healing polymeric materials: a review of recent developments. Progress in Polymer Sci., 2008, 33, no. 5: 479–522. https://doi.org/10.1016/j.progpolymsci.2008.02.001
  51. Carlson J.A., English J.M., Coe D.J. A flexible, self-healing sensor skin. Smart Materials and Structures, 2006, 15, no. 5: 129–135. https://doi.org/10.1088/0964-1726/15/5/N05
  52. Trask R.S., Williams G.J., Bond I.P. Bioinspired self-healing of advanced composite structures using hollow glass fibres. J of the Royal Soc Interface, 2007, 4, no. 13: 363–371. https://doi.org/10.1098/rsif.2006.0194
  53. Patel A.J., Sottos N.R., Wetzel E.D., White S.R. Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Composites A, 2010, 41, no. 3: 360–368. https://doi.org/10.1016/j.compositesa.2009.11.002
  54. Yang T., Wang C., Zhang J., He S., Mouritz A. Toughening and self-healing of epoxy matrix laminates using mendable polymer stitching. Composites Science and Technology, 2012, 72, no. 12: 1396–1401. https://doi.org/10.1016/j.compscitech.2012.05.012
  55. Hargou K., Pingkarawat K., Mouritz A., Wang C. Ultrasonic activation of mendable polymer for self-healing carbon–epoxy laminates. Composites B, 2013, 45, no. 1: 1031–1039. https://doi.org/10.1016/j.compositesb.2012.07.016
  56. Guadagno L., Longo P., Raimondo M., Naddeo C., Mariconda A., Sorrentino A., Vittoria V., Iannuzzo G., Russo S. Cure behavior and mechanical properties of structural self healing epoxy resins. J. Polym. Sci. B Polym. Phys., 2010, 48: 2413–2423. https://doi.org/10.1002/polb.22139
  57. Dry C., McMillan W. A novel method to detect crack location and volume in opaque and semi-opaque brittle materials. Smart Mater. Struct., 1997, 6: 35–39. https://doi.org/10.1088/0964-1726/6/1/004
  58. Burattini S., Greenland B.W., Chappell D., Colquhoun H.M., Hayes W. Healable polymeric materials: a tutorial review. Chem. Soc. Rev., 2010, 39: 1973–1985. https://doi.org/10.1039/b904502n
  59. Toohey K.S., Sottos N.R., Lewis J.A., Moore J.S., White S.R. Self-healing materials with microvascular networks. Nat.Mater., 2007, 6: 581–585. https://doi.org/10.1038/nmat1934
  60. Brown E.N., Sottos N.R., White S.R. Fracture testing of a self-healing polymer composite. Exp. Mech., 2002, 42: 372–379. https://doi.org/10.1007/BF02412141
  61. Brown E.N., White S.R., Sottos N.R. Microcapsule induced toughening in a self-healing polymer composite. J. Mater. Sci., 2004, 39: 1703–1710. https://doi.org/10.1023/B:JMSC.0000016173.73733.dc
  62. Rule J.D., Sottos N.R., White S.R., Moore J.S. The chemistry of self-healing polymers. Educ. Chem. 2005. 42: 130–132.
  63. Rule J., Brown E.N., Sottos N.R., White S.R., Moore J.S. Wax protected catalyst microspheres for efficient self healing materials. Adv. Mater., 2005, 17: 205–208. https://doi.org/10.1002/adma.200400607
  64. Jones A.S., Rule J.D., Moore J.S., White S.R., Sottos N.R. Catalyst morphology and dissolution kinetics of self-healing polymers. Chem. Mater., 2006, 18: 1312–1317. https://doi.org/10.1021/cm051864s
  65. Kessler M.R., White S.R. Self-activated healing of delamination damage in woven composites. Compos. A Appl. Sci. Manuf., 2001, 32: 683–699. https://doi.org/10.1016/S1359-835X(00)00149-4
  66. Kessler M.K., Sottos N.R., White S.R. Self-healing structural composite materials. Compos. A Appl. Sci. Manuf., 2003, 34, no. 8: 743–753. https://doi.org/10.1016/S1359-835X(03)00138-6
  67. Brown E.N., White S.R., Sottos N.R. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite–Part I: Manual infiltration. Compos. Sci. Technol., 2005, 65: 2466–2473. https://doi.org/10.1016/j.compscitech.2005.04.020
  68. Brown E.N., White S.R., Sottos N.R. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Compos. Sci. Technol., 2005, 65: 2474–2480. https://doi.org/10.1016/j.compscitech.2005.04.053
  69. Jones A.S., Rule J.D., Moore J.S., Sottos N.R., White S.R. Life extension of self-healing polymers with rapidly growing fatigue cracks. J. R. Soc. Interface, 2007, 4: 395–403. https://doi.org/10.1098/rsif.2006.0199
  70. Wilson G.O., Moore J.S., White S.R., Sottos N.R., Andersson H.M. Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv. Funct. Mater., 2008, 18: 44–52. https://doi.org/10.1002/adfm.200700419
  71. Rule J.D., Sottos N.R., White S.R. Effect of microcapsule size on the performance of self-healing polymers. Polymer, 2007, 48: 3520–3529. https://doi.org/10.1016/j.polymer.2007.04.008
  72. Wilson G.O., Caruso M.M., Reimer N.T., White S.R., Sottos N.R., Moore J.S. Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem. Mater., 2008, 20, no. 10: 3288–3297. https://doi.org/10.1021/cm702933h
  73. Zwaag S. (ed.). Self healing materials: an alternative approach to 20 centuries of materials science. – Springer Science+ Business Media BV, 2008. ISBN 978-1-4020-6250-6
  74. Int Patent WO/2007/005657. Multiple function, self-repairing composites with special adhesives. C. Dry (2007). Publ.
  75. Motuku M., Vaidya U.K., Janowski G.M. Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct, 1999, 8: 623–638. https://doi.org/10.1088/0964-1726/8/5/313
  76. Brown E.N., Kessler M.R., Sottos N.R., White S.R. In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene. J. Microencapsul, 2003, 20: 719–730. https://doi.org/10.3109/02652040309178083
  77. Guadagno L., Longo P., Raimondo M., Naddeo C., Mariconda A., Vittoria V., Iannuzzo G., Russo S. Use of Hoveyda–Grubbs’ second generation catalyst in self-healing epoxy mixtures. Compos. B, 2011, 42: 296–301. https://doi.org/10.1016/j.compositesb.2010.10.011
  78. Raimondo M., Corvino R., Guadagno L., Longo P., Naddeo C., Mariconda A. // European Polymer Congress 2011 (XII Congress of the Specialized Group of Polymers (GEP) (eds J. San Juan, L. Garcia-Fernandez). – 26th June-1st July 2011, Granada, Spain. (Book of abstracts: 749).
  79. Garber S.B., Kingsbury J.S., Gray B.L., Hoveyda A.H. Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J. Am. Chem. Soc., 2000, 122, no. 34: 8168–8179. https://doi.org/10.1021/ja001179g
  80. Wakamatsu H., Blechert S.A. A Highly Active and Air Stable Ruthenium Complex for Olefin Metathesis. Angew. Chem. Int. Ed., 2002, 41, no. 5: 794–796. https://doi.org/10.1002/1521-3773(20020301)41:5<794::AID-ANIE794>3.0.CO;2-B
  81. Grubbs R.H. (ed.) Handbook of Metathesis, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2003: 1234. ISBN: 978-3-527-30616-9
  82. Guadagno L., Vertuccio L., Sorrentino A., Raimondo M., Naddeo C., Vittoria V., Iannuzzo G., Calvi E., Russo S. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon, 2009, 47, no. 10: 2419–2430. https://doi.org/10.1016/j.carbon.2009.04.035
  83. Pat. USA 2011118385 (A1). Process for preparing self-healingcomposite materials of high efficiency forstructural applications. / Guadagno L., Raimondo M., Naddeo C., Mariconda A., Corvino R., Longo, P., Vittoria, V., Russo S., Iannuzzo G. – Publ. 2011.
  84. Pat. EP 2257422. A composite material which is self-repairing even at low temperature. / Guadagno L., Longo P., Raimondo M., Mariconda A., Naddeo C., Sorrentino A., Vittoria V., Iannuzzo G., Russo S., Calvi E. – Publ. 2010.
  85. Guadagno L., Raimondo M. Use of FT/IR analysis to control the self-healing functionality of epoxy resins. In book: Infrared Spectroscopy – Materials Science, Engineering and Technology. Ed.: T.Theophanides. Rijeka: InTech, 2011: 285–300.
  86. Guadagno L., Raimondo M., Naddeo C., Longo P., Mariconda A., Binder W.H. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater. Struct., 2014, 23, no. 4: 045001 (11pp)
  87. Raimondo M., Guadagno L. AIP Conf. Proc., 2012, 1459:223–225. doi: 10.1063/1.4738450. ISBN 978-0-7354-1061-9. https://doi.org/10.1063/1.4738450
  88. Wilson G.O., Porter K.A., Weissman H., White S.R., Sottos N.R., Moore J.S. Stability of Second Generation Grubbs’ Alkylidenes to Primary Amines: Formation of Novel Ruthenium Amine Complexes. Adv. Synth. Catal., 2009, 351: 1817–1825. https://doi.org/10.1002/adsc.200900134

89 Pat. 20070873950 20071017 USA. Self-Healing composite material and method of manufacturing same. / P. Merle, Y. Guntzburger, E. Haddad, S.V. Hoa, G. Thatte – Publ. 2007

  1. Guadagno L., Raimondo M., Iannuzzo G., Russo S. Self Healing Structures in Aerospace Applications. AIP Conf. Proc., 2010, 1255, no. 1: 267–269. https://doi.org/10.1063/1.3455603

91 Mostovoy, S., Crosley, P.B., Ripling E.J. Use of crack line loaded specimens for measuring plane strain fracture toughness. J. Mater., 1967, 2: 661–681.

  1. Beres W., Ashok K.K., Thambraj R.A. A tapered double-cantilever-beam specimen designed for constant-K testing at elevated temperatures. J. Test. Eval., 1997, 25: 536–542. https://doi.org/10.1520/JTE11493J
  2. Sundaresan V.B., Morgan A., Castellucci M. Self-healing of ionomeric polymers with carbon fibers from medium-velocity impact and resistive heating. Smart Materials Research, 2013, 2013, Article ID 271546, 12 p.
  3. Nazeer A.A., Madkour M. Potential use of smart coatings for corrosion protection of metals and alloys: A review. J. of Molecular Liquids, 2018, 253: 11–22. https://doi.org/10.1016/j.molliq.2018.01.027
  4. Dry C.M., Sottos N. Passive smart self-repair in polymer matrix composite materials. Smart Structures and Materials 1993: Smart Materials. Int Soc for Optics and Photonics, 1993, 1916: 438–444.
  5. Yang Z., Wei Z., Le-ping L., Si-jie W., Wu-jun L. Self-healing coatings containing microcapsule. Appl. Surf. Sci., 2012, 258: 1915–1918. https://doi.org/10.1016/j.apsusc.2011.06.154
  6. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R. Autonomic healing of polymer composites. Nature, 2001, 409, no. 6822: 794–817. https://doi.org/10.1038/35057232
  7. Pat. 8664298B1 USA, IC7 C08K 9/00. Self-healing polymer nanocomposite coatings for use on surfaces made of wood / R. Ou, K. Eberts, G. Skandan, S.P.Lee, R. Iezzi, D.E. Eberly. – Publ. 04.03.2014.
  8. Tu K., Wang X., Kong L., Guan H. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood. Materials & Design, 2018, 140: 30–36. https://doi.org/10.1016/j.matdes.2017.11.029
  9. Duarah R., Karak N. High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes. New J. Chem., 2018, 42, no. 3: 2167–2179. https://doi.org/10.1039/C7NJ03889E
  10. Lee M.W., An S., Kim Y.I., Yoon S.S., Yarin A.L. Self-healing three-dimensional bulk materials based on core-shell nanofibers. Chem. Eng. J., 2018, 334: 1093–1100. https://doi.org/10.1016/j.cej.2017.10.034
  11. Cordier P., Tournilhac F., Soulie-Ziakovic C., Leibler L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature, 2008, 451, no. 7181: 977–980. https://doi.org/10.1038/nature06669
  12. Ying H., Zhang Y., Cheng J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun., 2014, 5: 3218. https://doi.org/10.1038/ncomms4218
  13. Zhang Y., Ying H., Hart K.R., Wu Y., Hsu A.J., Coppola A.M., Kim, T.A., Yang K., Sottos N.R., White S.R., Cheng J. Malleable and recyclable poly (urea urethane) thermosets bearing hindered urea bonds. Adv. Mater., 2016, 28, no. 35: 7646–7651. https://doi.org/10.1002/adma.201601242
  14. Zechel S., Geitner R., Abend M., Siegmann M., Enke M., Kuhl N., Klein M., Vitz J., Grдfe S., Dietzek B., Schmitt M., Popp J., Schubert U.S., Hager M.D. Intrinsic self-healing polymers with a high E-modulus based on dynamic reversible urea bonds. NPG Asia Materials, 2017, 9, no. 8: e420. https://doi.org/10.1038/am.2017.125
  15. Chen X., Dam M. A., Ono K., Mal A., Shen H., Nutt S. R., Sheran K., Wudl F.A. A thermally re-mendable cross-linked polymeric material. Science, 2002, 295, no. 5560: 1698–1702. https://doi.org/10.1126/science.1065879
  16. Chen X., Wudl F., Mal A. K., Shen H., Nutt S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules, 2003, 36, no. 6: 1802–1807. https://doi.org/10.1021/ma0210675
  17. Tang J., Wan L., Zhou Y., Pan H., Huang F. Strong and efficient self-healing adhesives based on dynamic quaternization cross-links. J. Mater. Chem. A., 2017, 5, no. 40: 21169–21177. https://doi.org/10.1039/C7TA06650C
  18. Hatami Boura S., Peikari M., Ashrafi A., Samadzadeh M. Self-healing ability and adhesion strength of capsule embedded coatings—Micro and nano sized capsules containing linseed oil. Progress in Organic Coatings, 2012, 75, no. 4: 292–300. https://doi.org/10.1016/j.porgcoat.2012.08.006
  19. Stirn Z., Rucigaj A., Krajnc M. Characterization and kinetic study of Diels-Alder reaction: Detailed study on N-phenylmaleimide and furan based benzoxazine with potential self-healing application . eXPRESS Polymer Letters, 2016, 10, no. 7: 537–547. https://doi.org/10.3144/expresspolymlett.2016.51
  20. Scheltjens G., Brancart J., De Graeve I., Van Mele B., Terryn H., Van Assche G. Self-healing property characterization of reversible thermoset coatings. J. Therm. Anal. Calorim., 2011, 105, no. 3: 805–809. https://doi.org/10.1007/s10973-011-1381-4
  21. Gandini A. The application of the Diels-Alder reaction to polymer syntheses based on furan/maleimide reversible couplings. Polнmeros: Ciкncia e Tecnologia, 2005, 15, no. 2: 95–101. https://doi.org/10.1590/S0104-14282005000200007