2019 (1) 2
https://doi.org/10.15407/polymerj.41.01.019
Effect of surface nature of nanofiller on the in situ formation and morphology of a poly(methyl methacrylate)/polyurethane blend
V.F. Shumsky, L.F. Kosyanchuk, T.D. Ignatova, I.P. Getmanchuk, O.I. Antonenko, L.O. Vorontsova, O.O. Brovko
Institute of Macromolecular Chemistry of NAS of Ukraine
48, Kharkivske shause, Kyiv, 02160, Ukraine
Polym. J., 2019, 41, no. 1: 19-25
Section: Structure and properties.
Language: Ukrainian.
Abstract:
Creation of the multicomponent systems based on the polymer mixtures, semi- and fool interpenetrating polymer networks at combining of rigid and flexible components by the method of in situ mixing is the perspective way of formation of polymer composite materials with properties changing from reinforced elastomers up to impact-resistant plastics. Introduction of fillers which are compatibilizers into such systems on the stage of forming facilitates dispersion of one phase in other and stabilizes morphology of mixture. Nature of surface of filler has considerable influence on these processes. The aim of this research was to determine an influence of surface nature of nanofiller (aerosil) on the process of formation (kinetics and rheokinetics) and morphology of a linear poly(methyl methacrylate) – cross-linked polyurethane blend. For this purpose isothermal calorimetry, rheokinetic measuring and optical microscopy were used as research methods. It was shown that the introduction of hydrophobic aerosil into the reaction mixture leads to a decrease in the rate of both urethane formation and polymerization of methyl methacrylate as compared to those using hydrophilic (unmodified) aerosil. For the mixture filled with hydrophobic aerosil, the rheokinetic curves of h(t) dependences have the traditional extreme form that is characteristic of systems in which phase separation occurs. In contrast, for the mixture filled with hydrophilic aerosil, the extremum in the h(t) dependence is absent, which may be due to the “forced” compatibility between the components of the mixture in the presence of such a nanofiller. The results obtained are consistent with the morphology of the studied systems.
Key words: nanofillers, hydrophobization, viscosity, degree of conversion, polymer blends, phase separation.
References
- Lipatov Y.S., Alekseeva T.T. Phase-separated interpenetrating polymer networks. Advances in Polymer Science, 2007, 208: 1–234. https://doi.org/10.1007/12_2007_116
- Zaikin А.Е Bobrov G. B. Compatibilization of blends of incompatible polymers via filling. Polym. Sci. Ser. A, 2012, 54, no 8: 1275–1282. https://doi.org/10.1134/S0965545X12070085
- Kelnar I., Khunova V., Kotek J., Kapralkova L. Effect of clay treatment on structure and mechanical behavior of elastomer-containg polyamide 6 nanocomposite. Polymer, 2007, 48, no 18: 5332–5339. https://doi.org/10.1016/j.polymer.2007.06.062
- Lipatov Yu.S., Ignatova T.D., Kosyanchuk L.F., Yarovaya N.V. Influence of solid surface on the compatibility in polymer blends produced in situ. Europ. Polym. J., 2006, 42, no 11: 3102–3107. https://doi.org/10.1016/j.eurpolymj.2006.08.001
- Elias L., Fenouillot F., Majeste J.C., Cassagnau Ph. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer, 2007, 48, no 10: 6029–6040. https://doi.org/10.1016/j.polymer.2007.07.061
- Bigg D.M. Rheological behavior of highly filled polymer melts. Polym. Eng. Sci., 1983, 23, no 4: 206–210. https://doi.org/10.1002/pen.760230408
- Katz H.S., Milewski D.V. Handbook of fillers and reinforcements for plastics (Rus.), Moscow: Khimiya, 1981: 736.
- Shumsky V.F., Kosyanchuk L.F., Todosiichuk T.T., Getmanchuk I.P., Babich O.V., Gomza Yu.P. Effect of a nanofiller on the rheokinetics of the formation in situ of poly(methyl methacrylate) – polyurethane blend. Reports Nat. Acad. Sci. Ukraine (Rus.), 2011, no 2: 137–143.
- Shumsky V.F., Kosyanchuk L.F., Ignatova T.D., Gomza Yu.P., Getmanchuk I.P., Antonenko O.I., Babich O.V., Nesin S.D., Maslak Yu.V. Rheokinetics of in situ formation of aerosil filled poly(methylmethacrylate)/polyurethane blend. Polymer J. (Rus.), 2014, 36, no 11: 57–65.
- Lipatov Yu.S., Alekseeva T.T., Rosovitskiy V.F. Kineticheskie osobennosti otverzhdeniya gibridnyh svyazuyushchih na osnove setchatogo poliuretana i polibutilmetakrilata. Dokl. AN SSSR (Rus.), 1989, 307, no. 4: 883–887.
- Lachinov M.B., Korolev B.A., Dreval’ V.Ye., Cherep Ye.I., Zubov V.P., Vinogradov G.V., Kabanov V.A. Relation of autoaccelaration at radical polymerization of methyl methacrylate in bulk with structural changes of polymerizing system, Vysokomol. Soedin. Ser. A (Rus.), 1982, 24, no 10: 2220–2226.
- Richter E.B., Macosko C.W. Viscosity changes during isothermal and adiabatic network polymerization. Polym. Eng. Sci., 1980. 20, no 14: 921–927. https://doi.org/10.1002/pen.760201402
- Winter H.H. Can the gel point of a cross-linking polymer be detected by the G2 – G2 2 crossover? Polym. Eng. Sci., 1987, 27, no 22: 1698–1702. https://doi.org/10.1002/pen.760272209
- Gorbunova I.Yu., Kerber M.L., Balashov I.N., Kazakov S.I., Malkin A.Ya. Cure rheokinetics and change in properties of a phenol-urethane compostion: comparision of results obtained by different methods, Polym. Sci. Ser. A, 2001, 43, no 8: 826–833.
- Gladyshev G.P., Popov V.A. Radical polymerization at high conversions (Rus.). Moscow: Nauka, 1974: 242.
- Shejnina L.S. Issledovanie zakonomernostej processa obrazovaniya poliuretanov v mnogokomponentnyh sistemah (Rus.): Dis. kand. him. Nauk, Kiev, 1983: 176.
- Klykova V.D., Chalykh A.Ye., Vershinin L.V., Kuleznev V.N., Avdeev N.N., Matveev V.V., Yanovski Yu.G. Phase equilibrium, structure and properties of polystyrene–butadiene-styrene copolymer in the ply separation region. Vysokomol. Soedin. Ser. A (Rus.), 1985, 27, no 4: 724–731.
- Malkin A.Ya., Kulichikhin S.G. Rheology in the processes of polymer formation and conversion (Rus.), Moscow: Khimiya, 1985: 240.
- Kim H., Char K. Reological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends. Korea-Australia Rheol. J., 2000, 12, no 1: 77–81.
- Malkin A.Ya., Isaev A.I. Rheology: concepts, methods, applications (Rus.), St. Petersburg: Professiya, 2010: 557.
- Zhavoronok E.S., Chalykh A.E., Kolesnikova E.F. Vliyanie prirody i funkcionalnosti jepoksidnyh oligomerov na reokinetiku ih otverzhdeniya, Plast. Massy (Rus.), 2013, no 4: 16–20.
- IgnatovaT.D., Kosyanchuk L.F., Todosiychuk T.T., Nesterov A.E. Reaction-induced phase separation and structure formation in polymer blends. Composite Interfaces, 2011, 18, no 3: 185–236. https://doi.org/10.1163/092764411X567530
- Shumsky V.F., Ignatova T.D., Kosyanchuk L.F., Getmanchuk I.P., Antonenko O.I. Rheokinetics of the formation of poly(methyl methacrylate), crosslinked polyurethane and its blend. The scaling approach, ХІV Ukrayins’ka konferencіya z vysokomolekulyarnyh spoluk: tezy dopovіdej, Kyiv, 15–18 zhovtnya, 2018: 117–119.
- Jyotishkumar P., Ozdilek C., Moldenaers P., Sinturel C., Janke A., Pionteck J., Thomas S. Dynamics of phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/DDS system: kinetics and viscoelastic effects. J. Phys. Chem., B. 2010, 114, no 42: 13271–13281. https://doi.org/10.1021/jp101661t