2019 (2) 5
Polymeric organic-inorganic proton-exchange membranes based on anionic oligomeric ionic liquid of hyperbranched structure
A.V. Stryutsky1, O.O. Sobko1, M.A. Gumenna1, N.S. Klimenko1, A.V. Kravchenko2, V.V. Kravchenko2, A.V. Shevchyuk2, V.V. Shevchenko1
1Institute of Macromolecular Chemistry of the National academy of sciences of Ukraine
48, Kharkivske shose, Kyiv, 02160, Ukraine
2L.M. Litvinenko Institute of Physical-organic Chemistry and Coal Chemistry NAS of Ukraine
50, Kharkivske shose, Kyiv, 02160, Ukraine
Polym. J., 2019, 41, no. 2: 123-129
Section: Synthesis of polymers.
Language: Russian.
Abstract:
A method for sol-gel synthesis of organic-inorganic polymeric proton-exchange membranes (PEM) with anhydrous mechanism of proton conductivity based on the protic anionic hyperbranched oligomeric ionic liquid (HBP-OIL) as a dopant was developed. These membranes contain oligoethyleneoxide component and HBP-OIL as anhydrous proton-conducting medium and the latter plays a role of proton-donating component. The structure of the synthesized membranes was confirmed by FTIR spectroscopy. Thermophysical characteristics were determined by DSC and TGA. According to DSC study the proposed membranes are characterized by an amorphous structure and their Tg values range from -12° C to 30° C. It was shown that the values of Tg and the nature of structuring of the PEMs is determined by the content of the dopant in their composition. The PEM synthesized are thermally stable up to 250–280 °С. The initial dopant and the PEM with the highest content of the dopant are characterized by a maximum thermal stability. The protic conductivity of the developed membranes according to the results of dielectric relaxation spectroscopy measurements is 10–4–10–3 S/cm at temperatures of 100–120 °C under anhydrous conditions. The highest level of conductivity was reached for the PEM with a maximum content of the dopant. The conductivity of this membrane is 4,67·10-3 S/cm and 8,11·10-3 S/cm at temperatures of 100 °C and 120 °C, respectively under anhydrous conditions.
Keywords: oligomeric ionic liquid, hyperbranched structure, organic-inorganic polymeric proton-exchange membrane, sol-gel method, ionic conductivity.
References
- Díaz M., Ortiz A., Ortiz I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci., 2014, 469: 379–396. https://doi.org/10.1016/j.memsci.2014.06.033
- Hernández-Flores G., Poggi-Varaldo H.M., Solorza-Feria O. Comparison of alternative membranes to replace high cost Nafion ones in microbial fuel cells. Int. J. Hydrogen Energy, 2016, 41, no. 48: 23354–23362. https://doi.org/10.1016/j.ijhydene.2016.08.206
- Michau M., Barboiu M. Self-organized proton conductive layers in hybrid proton exchange membranes, exhibiting high ionic conductivity. J. Mater. Chem., 2009, 19, no. 34: 6124–6131. https://doi.org/10.1039/b908680c
- Shevchenko V.V., Stryutskii A.V., Klimenko N.S. Polymeric organic–inorganic proton-exchange membranes for fuel cells produced by the sol-gel method. Theor. Exp. Chem., 2011, 47, no. 2: 67–92. https://doi.org/10.1007/s11237-011-9187-9
- Zhang F., Bao X., Liu Q., Huang M. High temperature polymer electrolyte membranes based on poly(2,5-benzimidazole) (ABPBI) and POSS incorporated ionic liquid. J. Chem. Eng. Mater. Sci., 2014, 2, no. 4: 86–93. https://doi.org/10.1016/j.msec.2014.06.029
- Tripathi B.P., Shahi V.K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci., 2011, 36, no. 7: 945–979. https://doi.org/10.1016/j.progpolymsci.2010.12.005
- Shevchenko V.V., Stryutskiy A.V., Gumennaya M.A., Lysenkov E.A., Klimenko N.S. Organo-neorganicheskiye membrany so svoystvami bezvodnykh protonprovodyashchikh elektrolitov, poluchennyye zol-gel metodom. Dop. NAN Ukryiny, 2010, no. 8: 157–162.
- Yuan J., Mecerreyes D., Antonietti M. Poly(ionic liquid)s: An update. Prog. Polym. Sci., 2013, 38, no. 7: 1009–1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002
- Shaplov A.S., Marcilla R., Mecerreyes D. Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim. Acta, 2015, 175: 18–34. https://doi.org/10.1016/j.electacta.2015.03.038
- Shaplov A.S., Lozinskaya E.I., Vygodskii Y.S. Polymer ionic liquids: Synthesis, design and application in electrochemistry as ion conducting materials, Chapter 9. In book: Electrochemical properties and applications of ionic liquids. Ed.: Torriero A.A.J., Shiddiky, M. J. A. New York: Nova Science Publishers, Inc., 2010: 203–298. ISBN 978-1617289422.
- Shevchenko V.V., Stryutsky A.V., Klymenko N.S., Gumenna M.A., Fomenko A.A., Bliznyuk V.N., Trachevsky V.V., Davydenko V.V., Tsukruk V.V. Protic and aprotic anionic oligomeric ionic liquids. Polymer, 2014, 55, no. 16: 3349–3359. https://doi.org/10.1016/j.polymer.2014.04.020
- Xu W., Ledin P.A., Shevchenko V.V., Tsukruk V.V. Architecture, assembly, and emerging applications of branched functional polyelectrolytes and poly(ionic liquid)s. ACS Appl. Mater. Interfaces, 2015, 7, no. 23: 12570–12596. https://doi.org/10.1021/acsami.5b01833
- Korolovych V.F., Ledin P.A., Stryutsky A., Shevchenko V.V., Sobko O., Xu W., Bulavin L.A., Tsukruk V.V. Assembly of amphiphilic hyperbranched polymeric ionic liquids in aqueous media at different pH and ionic strength. Macromolecules, 2016, 49, no. 22: 8697–8710. https://doi.org/10.1021/acs.macromol.6b01562
- Stryutskiy A.V., Lysenkov E.A., Gumennaya M.A., Zolotarev A.R., Vortman M.Ya., Klimenko N.S., Shevchenko V.V. Protonprovodyashchiye organo-neorganicheskiye polimernyye membrany na osnove funktsionalizirovannykh alkoksisililnykh prekursorov, poluchennyye zol-gel metodom. Polіmer. zhurn., 2010, 32, no. 5: 383–387.
- Shevchenko V.V., Stryutskii A.V., Bliznyuk V.N., Klimenko N.S., Shevchuk A.V., Lysenkov E.A., Gomza Y.P. Synthesis, structure, and properties of anhydrous organic-inorganic proton-exchange membranes based on sulfonated derivatives of octahedral oligosilsesquioxanes and α,ω-di(triethoxysilyl) oligo(oxyethylene urethane urea). Polymer Sci. B., 2014, 56, no. 2: 216–228. https://doi.org/10.1134/S1560090414020158
- Shevchenko V.V., Klimenko N.S., Stryutskiy A.V., Shevchuk A.V., Lysenkov E.A., Vortman M.Ya., Davidenko V.V. Polimernyye organo-neorganicheskiye protonprovodyashchiye membrany na osnove sulfirovannykh proizvodnykh giperrazvetvlennykh poliefirpoliolov. Polіmer. zhurn., 2013, 35, no. 2: 157–164.
- Shevchenko V.V., Stryutskiy A.V., Klimenko N.S., Yakovlev Yu.V. Protonnaya oligomernaya ionnaya zhidkost giperrazvetvlennogo stroyeniya. Dop. NAN Ukryiny, 2014, no. 2: 136–141.
- Pretsch E., Bühlmann P., Affolter C. Structure determination of organic compounds: tables of spectral data. Structure determination of organic compounds: tables of spectral data. Berlin; New York: Springer, 2000: 421. ISBN 978-3-662-04201-4. https://doi.org/10.1007/978-3-662-04201-4
- Pebalk D.A., Barmatov E.B., Shibaev V.P. Liquid-crystalline ionomers as a new class of mesomorphous polymeric systems. Russ. Chem. Rev., 2005, 74, no. 6: 555–576. https://doi.org/10.1070/RC2005v074n06ABEH000968
- Kyritsis A., Pissis P., Grammatikakis J. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci., Part B: Polym. Phys., 1995, 33, no. 12: 1737–1750. https://doi.org/10.1002/polb.1995.090331205