2019 (2) 7

Structural features and porosity of the POSS-containing nanocomposites based on polyurethane-poly(hydroxypropyl methacrylate) matrix, which is formed by the principle of sequential IPNs

 

L.V. Karabanova1, L.A. Honcharova1, V.I. Sapsay2, D.O. Klymchuk2

 

1Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

2N.G. Kholodny Institute of Botany NAS of Ukraine

2, Tereshchenkivs’ka str., Kyiv, 01004, Ukraine

 

Polym. J., 2019, 41, no. 2: 101-108

 

Section: Synthesis of polymers.

 

Language: Ukrainian.

 

Abstract:

 

 

POSS-containing nanocomposites based on a multicomponent polymer matrix consisting of polyurethane (PU) and poly(hydroxypropyl methacrylate) (PHPMA), and 1,2-propanediolisobutyl polyhedral oligomeric silsesquioxanes (POSS), used as functionalized nanofiller, were synthesized. The porosity of created nanocomposites by adsorption of inert solvent vapor and morphology by scanning electron microscopy were studied. It was  shown that nanofiller, introduced into the semi-IPN at the stage of polyurethane synthesis, plays the role of a nanostructuring agent in the system. As a result, the nanocomposites with more ordered structure are formed, which leads to obtaining of materials with improved physical and mechanical properties. By study the porosity was shown  that POSS-containing nanocomposites based on polyurethane-poly(hydroxypropyl methacrylate) semi-IPNs are the materials with dense structure and transitional pores with size of 50 to 60 A and could be used as gas barrier membranes.

 

Keywords: nanocomposites, polyurethane, 1,2-propanediol isobutyl-POSS, semi-IPN, porosity, morphology.

 

References

  1. Ray S.S., Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539-1561. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  2. Shaffer M.S.P., Sandler J.K.W. Processing and properties of nanocomposites. Carbon Nanotube/Nanofibre Polymer Composites, Singapore: World Scientific, 2006: 1-59. ISBN 978-981-270-390-3. https://doi.org/10.1142/9789812772473_0001
  3. Bershtein V.A., Gun’ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv., 2013, 3: 14560-14570. https://doi.org/10.1039/c3ra40295a
  4. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. B, 2008, 46: 1696-1712. https://doi.org/10.1002/polb.21506
  5. Moniruzzaman M., Winey K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules, 2006, 39: 5194-5205. https://doi.org/10.1021/ma060733p
  6. Wolinska-Grabczyk A., Jankowski A. Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep. Pur. Tech., 2007, 57: 413-417. https://doi.org/10.1016/j.seppur.2006.03.025
  7. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29: 177-185.
  8. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291: 573-583. https://doi.org/10.1007/s00396-012-2745-4
  9. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci. Tech., 2012, 72: 865-872. https://doi.org/10.1016/j.compscitech.2012.02.008
  10. Madhavan K., Reddy B.S.R. Structure-gas transport property relationships of poly(dimethylsiloxane-urethane) nanocomposite membranes. J. Mem. Sci., 2009, 342: 291-299. https://doi.org/10.1016/j.memsci.2009.07.002
  11. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31, no. 2: 137-143.
  12. Mahapatra S.S., Yadav S.K., Cho J.W. Nanostructured hyperbranched polyurethane elastomer hybrids that incorporate polyhedral oligosilsesquioxane. React. Funct. Polym., 2012, 72: 227-232. https://doi.org/10.1016/j.reactfunctpolym.2012.02.001
  13. Lewicki J.P., Pielichowski K., Jancia M., Hebda E., Albo R.L.F., Maxwell R.S. Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym. Degrad. Stab., 2014, 104: 50-56. https://doi.org/10.1016/j.polymdegradstab.2014.03.025
  14. Wei K., Wang L., Zheng S. Organic-inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender. Polym. Chem., 2013, 4: 1491-1501. https://doi.org/10.1039/C2PY20930F
  15. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230-1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016
  16. Huang J., Jiang P., Li X., Huang Y. Synthesis and characterization of sustainable polyurethane based on epoxy soybean oil and modified by double-decker silsesquioxane. J. Mater. Sci., 2016, 51: 2443-2452. https://doi.org/10.1007/s10853-015-9557-0
  17. Karabanova L.V., Honcharova L.A., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7: 413-420.
  18. Wang W., Guo Y., Otaigbe J.U. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites. Polymer, 2009, 50: 5749-5757. https://doi.org/10.1016/j.polymer.2009.05.037
  19. Lai Y.S., Tsai C.W., Yang H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mat. Chem. Phys., 2009, 117: 91-98. https://doi.org/10.1016/j.matchemphys.2009.05.006
  20. Huitron-Rattinger E., Ishida K., Romo-Uribe A., Mather P.T. Thermally modulated nanostructure of poly(ε-caprolactone)-POSS multiblock thermoplastic polyurethanes. Polymer, 2013, 54: 3350-3362. https://doi.org/10.1016/j.polymer.2013.04.015
  21. Lipatov Y.S. Polymer reinforcement. Toronto: ChemTec. Publishing, 1995: 406. ISBN 1-895198-08-9.
  22. Lipatov Y.S., Karabanova L.V. Gradient interpenetrating polymer networks. In book: Advances in interpenetrating polymer networks. D. Klempner, K.C. Frish (Eds), vol.4, Lancaster: Techomic, 1994: 191-212. ISBN 0-877627-08-8.
  23. Karabanova L.V., Sergeeva L.M., Boiteux G. Filler effect on formation and properties of reinforced interpenetrating polymer networks. Composite Interfaces, 2001, 8: 207-219. https://doi.org/10.1163/15685540152594677
  24. Karabanova L.V., Gomza Yu.P., Nesin S.D., Bondaruk O.M., Voronin E.P., Nosach L.V. Nanocomposites based on multicomponent polymer matrices and nanofiller densil for biomedical application. In book: Nanophysics, Nanophotonics, Surface Studies and Application. O. Fesenko, L. Yatsenko (Eds), Switzerland: Springer, 2016: 451-475. ISBN 978-3-319-30736-7. https://doi.org/10.1007/978-3-319-30737-4_38
  25. Bershtein V.A., Gun’ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Advances, 2013, 3: 14560-14570. https://doi.org/10.1039/c3ra40295a
  26. Karabanova L.V., Bershtein V.A., Gomza Yu.P., Kirilenko D.A., Nesin S.D., Yakushev P.N. Nanostructure, dynamics, and mechanical properties of nanocomposites based on polyurethane-poly(2-hydroxyethyl methacrylate) semi-interpenetrating polymer network with ultralow MWCNT contents. Polym. Composites, 2018, 39: 263-273. https://doi.org/10.1002/pc.23926
  27. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Svyatyna A., Vylegzhanina M.E. 3-D diamond-containing nanocomposites based on hybrid polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPNs: composition – nanostructure-segmental dynamics – elastic properties relationships. J. Polym. Sci. B Phys, 2008, 46, no. 16: 1696-1712. https://doi.org/10.1002/polb.21506
  28. Karabanova L.V., Honcharova L.A., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7, no. 4: 413-420.
  29. Karabanova L.V., Honcharova L.A., Babkina N.V., Sapsay V.I., Klymchuk D.O. POSS-containing nanocomposites based on polyurethane/poly(hydroxypropyl methacrylate) polymer matrix: dynamic mechanical properties and morphology. Polym. Testing, 2018, 69: 556-562. https://doi.org/10.1016/j.polymertesting.2018.06.012
  30. Tager A.A. Phiziko-chimiya polimerov. M.: Nauchniy mir, 2007: 576 [In Russian]. ISBN 978-589-176-437-8.
  31. Karabanova L.V., Gorbach L.A., Skiba S.I. Termodinamicheskoye issledovaniye vzaimodejstvij v napolnennyh vzaimopronikayushchih setkah. Kompozitsionnye polimernye materialy (Ukr.), 1991, 49: 35-39 [in Russian].
  32. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60, no. 2: 309-319. https://doi.org/10.1021/ja01269a023
  33. Greg S., Sing K. Adsorbtsiya, udelnaya poverhnost, poristost. M.: Mir, 1970: 408 [in Russian].
  34. Dubinin M.M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev., 1960, 60, no. 2: 235-241. https://doi.org/10.1021/cr60204a006