2019 (3) 1

https://doi.org/10.15407/polymerj.41.03.149

Exfoliation of Montmorillonite in polymer matrix and its influence on the nanocomposites properties

 

А. N. Gonchar, Yu.V. Savelyev

 

Institute of macromolecular chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine, lexgon@ukr.net

 

Polym. J., 2019, 41, no. 3: 149-158.

 

Section: Review.

 

Language: Ukrainian.

 

Abstract:

 

This review is devoted to the latest achievements in the field of creating of exfoliated polymer nanocomposites with montmorillonite (MMT) modified organic compounds. The necessary condition, when creating exfoliated polymer nanocomposites of the polymer / organoclay type, is the exfoliation of the nanofiller (MMT) in the polymer matrix. Exfoliation is the decomposition of MMT layered silicate packets into flat nanoparticles. Only well-laminated and exfoliated in the polymer matrix MMT can significantly improve the properties of nanocomposites when compare with the polymer matrix. This review examines the latest scientific achievements in the field of MMT exfoliation, understanding of the flaking off mechanisms of exfoliation, the influence of ultrasound and solvent on dispersion and delamination of MMT plates. Exfoliation of MMT for nanocomposite creation is mainly achieved in three ways: by exfoliation during the synthesis (in situ), by exfoliation in solution (solution exfoliation) and in the melt (melt exfoliation). Polymer / organoclay nanocomposites exhibit improved barrier properties, physic- mechanical properties (strength), thermal stability and fire resistance. A review of the literature suggests that future work in this area should continue on the basis of delaminating methods and an in-depth understanding of the exfoliation mechanisms. For future research, to create functional hierarchical materials, the use of MMT modified with functional organic compounds is proposed.

 

Keywords: exfoliation, montmorillonite, nanocomposite.

 

References

  1. Moon S.-Y, Kim J.-K., Nah C., Lee Y.-S. Polyurethane/montmorillonite nanocomposites prepared from crystalline polyols, using 1,4-butanediol and organoclay hybrid as chain extenders. European Polymer Journal, 2004, 40, no. 8 : 1615-1621. https://doi.org/10.1016/j.eurpolymj.2004.04.018
  2. Kiliaris P., Papaspyrides C. D. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Progress in Polymer Science, 2010, 35, no. 7 : 902-958. https://doi.org/10.1016/j.progpolymsci.2010.03.001
  3. Pavlidou S., Papaspyrides C. D. A review on polymer-layered silicate nanocomposites. Progress in Polymer Science, 2008, 33, no. 12 : 1119-1198. https://doi.org/10.1016/j.progpolymsci.2008.07.008
  4. Schmidt D., Shah D., Giannelis E. P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science, 2002, 6, no. 3 : 205-212. https://doi.org/10.1016/S1359-0286(02)00049-9
  5. Paul D. R. Robeson L. M. Polymer nanotechnology: nanocomposites. Polymer, 2008, 49, no. 15 : 3187-3204. https://doi.org/10.1016/j.polymer.2008.04.017
  6. Fu H. Yan C., Zhou W., Huang H. Preparation and characterization of a novel organic montmorillonite/fluorinated waterborne polyurethane nanocomposites: effect of OMMT. Composites Science and Technology, 2013, 85: 65-72. https://doi.org/10.1016/j.compscitech.2013.05.018
  7. Delozier D. M., Orwoll R. A., Cahoon J. F., [et al.]. Preparation and characterization of polyimide/organoclay nanocomposites. Polymer, 2002, 43, no. 3 : 813-822. https://doi.org/10.1016/S0032-3861(01)00640-1
  8. Suprakas Sinha Ray, Masami Okamoto. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci., 2003, 28: 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002
  9. Alateyah, A.I., Dhakal, H.N., Zhang, Z.Y. Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Adv. Polym. Technol., 2013, 32, no. 4: 1-36. https://doi.org/10.1002/adv.21368
  10. Dianez I., Martinez I., Partal P. Synergistic effect of combined nanoparticles to elaborate exfoliated egg-white protein-based nanobiocomposites. Composites Part B Engineering, 2015, 88: 36-43. https://doi.org/10.1016/j.compositesb.2015.10.034
  11. Zhou C.H., Keeling J. Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl. Clay Sci., 2013, 74, no. 1 : 3-9. https://doi.org/10.1016/j.clay.2013.02.013
  12. Devi K.S.U., Ponnamma D., Causin V., Maria H.J., Thomas S. Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites. Appl. Clay Sci., 2015, 114: 568-576. https://doi.org/10.1016/j.clay.2015.07.009
  13. Shameli K., Zakaria Z., Hara H., Ahmad M.B., Mohamad S.E., Nordin M.F.M., Iiwamoto K. Poly (lactic acid)/organoclay blend nanocomposites: structural, mechanical and microstructural properties. Digest J. Nanomater. Biostruct., 2015, 10, no. 1: 323-329.
  14. Yang F., Mubarak C., Keiegel R., Kannan R.M. Supercritical carbon dioxide (scCO2) dispersion of poly (ethylene terephthalate)/clay nanocomposites: Structural, mechanical, thermal, and barrier properties. J. Appl. Polym. Sci., 2017, 134, no. 18: 1-11. https://doi.org/10.1002/app.44779
  15. Ammar A., Elzatahry A., Al-Maadeed M., Alenizi A.M., Huq A.F., Karim A. Nanoclay compatibilization of phase separated polysulfone/polyimide films for oxygen barrier. Appl. Clay Sci., 2017, 137: 123-134. https://doi.org/10.1016/j.clay.2016.12.012
  16. Bahreini Z., Heydari V., Namdari Z. Effects of nano-layered silicates on mechanical and chemical properties of acrylic-melamine automotive clear coat. Pigm. Resin Technol., 2017, 46, no. 5: 333-341. https://doi.org/10.1108/PRT-07-2016-0077
  17. Nistor M.T., Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J. Therm. Anal. Calorim., 2013, 111, no. 3: 1903-1919. https://doi.org/10.1007/s10973-012-2731-6
  18. Ejder-Korucu M., Gurses A., Karaca S. Poly (ethylene oxide)/clay nanaocomposites: thermal and mechanical properties. Appl. Surf. Sci., 2016, 378: 1-7. https://doi.org/10.1016/j.apsusc.2016.03.159
  19. Jia F., Song S. Exfoliation and characterization of layered silicate minerals: a review. Surf. Rev. Lett., 2014, 21, no. 2: 1-10. https://doi.org/10.1142/S0218625X14300019
  20. Beyer G. Nanocomposites: a new class of flame retardants for polymers. Plast Addit Compound, 2002, 4, no. 10: 22-27. https://doi.org/10.1016/S1464-391X(02)80151-9
  21. Tarasevich Yu. I. The structure and chemistry of the surface of layered silicates. – Kiev: Nauk. dumka, 1988: 248.
  22. Nicolosi V., Chhowalla M., Kanatzidis M.G., Strano M.S., Coleman J.N. Liquid exfoliation of layered materials. Science, 2013, 340, no. 6139: 1-18. https://doi.org/10.1126/science.1226419
  23. Huang T.K., Chiou J.Y., Wang Y.C., Hsieh K.H., Lin J.J. Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism. J. Polym. Res., 2016, 23, no. 8: 1-7. https://doi.org/10.1007/s10965-016-1035-0
  24. Venugopal B.R., Sen S., Shivakumara C., Rajamathi M. Delamination of surfactant intercalated smectites in alcohols: effect of chain length of the solvent. Applied Clay Science, 2006, 32: 141-146. https://doi.org/10.1016/j.clay.2005.11.003
  25. Huang T.K., Chiou J.Y., Wang Y.C., Hsieh K.H., Lin J.J. Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism. J. Polym. Res., 2016, 23, no. 8: 1-7. https://doi.org/10.1007/s10965-016-1035-0
  26. Santos K.S., Bischoff E., Liberman S.A., Oviedo M.A., Mauler R.S. The effects of ultrasound on organoclay dispersion in the pp matrix. Ultrason. Sonochem., 2011, 18, no. 5: 997-1001. https://doi.org/10.1016/j.ultsonch.2011.03.011
  27. Nicolosi V., Chhowalla M., Kanatzidis M.G., Strano M.S., Coleman J.N. Liquid exfoliation of layered materials. Science, 2013, 340, no. 6139: 1-18. https://doi.org/10.1126/science.1226419
  28. Chaudhary D., Liu H. Ultrasonic treatment and synthesis of sugar alcohol modified Na+-montmorillonite clay. Ultrason. Sonochem., 2013, 20, no. 1: 63-68. https://doi.org/10.1016/j.ultsonch.2012.08.003
  29. Martinez-Colunga J.G., Sanchez-Valdes S., Blanco-Cardenas A., Ramirez-Vargas E., Ramos-De Valle L.F., Benavides-Cantu R., Espinoza-Martinez A.B., Sanchez-Lopez S., Lafleur P.G., Karami S., Lozano-Ramirez T. Dispersion and exfoliation of nanoclays in itaconic acid funcionalized LDPE by ultrasound treatment. J. Appl. Polym. Sci., 2018, 46260: 1-10. https://doi.org/10.1002/app.46260
  30. Roghani-Mamaqani H., Haddadi-Asl V., Najafi M., Salami-Kalajahi M. Preparation of nanoclay-dispersed polystyrene nanofibers via atom transfer radical polymerization and electrospinning. J. Appl. Polym. Sci., 2011, 120, no. 3: 1431-1438. https://doi.org/10.1002/app.33119
  31. Gunning M.A., Geever L.M., Killion J.A., Lyons J.G., Chen B., Higginbotham C.L. The effect of the mixing routes of biodegradable polylactic acid and polyhydroxybutyrate nanocomposites and compatibilised nanocomposites. J. Thermoplast. Compos. Mater., 2014, 29, no. 4: 538-557. https://doi.org/10.1177/0892705714526912
  32. Lepoittevin B., Devalckenaere M., Pantoustier N., Alexandre M., Kubies D., Calberg C., Jerome R., Dubois P. Poly (ε-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer, 2002, 43, no. 14: 4017-4023. https://doi.org/10.1016/S0032-3861(02)00229-X
  33. Pokharel P., Choi S., Dai S.L. The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Compos. A: Appl. Sci. Manuf., 2015, 69: 168-177. https://doi.org/10.1016/j.compositesa.2014.11.010
  34. Atta A.M., Al-Lohedan H.A., Alothman Z.A., Tawfeek A.M., Abdel Ghafar A., Hamad N.A. Effect of zeta potential of exfoliated amphiphilic montmorillonite nanogels on removal efficiencies of cationic dye water pollutant. Int. J. Electrochem. Sci., 2016, 11, no. 5: 3786-3802. https://doi.org/10.20964/110379
  35. Behniafar H., Ahmadi-Khaneghah A., Yazdi M. Enhanced heat stability and storage modulus in novel PTMO-intercalated clay platelets/PTMO-based polyurethane nanocomposites. J. Polym. Res., 2016, 23, no. 9: 1-10. https://doi.org/10.1007/s10965-016-1097-z
  36. Wang X., Su Q., Shan J., Zheng J. The effect of clay modification on the mechanical properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites prepared by in situ suspension polymerization. Polym. Compos., 2016, 37, no. 6: 1705-1714. https://doi.org/10.1002/pc.23343
  37. Zhuang G., Zhang H., Wu H., Zhang Z., Liao L. Influence of the surfactants’ nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids. Appl. Clay Sci., 2017, 135: 244-252. https://doi.org/10.1016/j.clay.2016.09.033
  38. Briesenick D., Bremser W. Synthesis of polyamide-imide-montmorillonite-nanocomposites via new approach of in situ, polymerization and solvent casting. Prog. Org. Coat., 2015, 82: 26-32. https://doi.org/10.1016/j.porgcoat.2015.01.013
  39. Fu Y.-T., Heinz H. Cleavage energy of alkylammonium-modified montmorillonite and relation to exfoliation in nanocomposites: influence of cation density, head group structure, and chain length. Chem. Mater., 2010, 22: 1595-1605. https://doi.org/10.1021/cm902784r
  40. Beltran M.I., Benavente V., Marchante V., Dema H., Marcilla A. Characterisation of montmorillonites simultaneously modified with an organic dye and an ammonium salt at different dye/salt ratios. Properties of these modified montmorillonites eva nanocomposites. Appl. Clay Sci., 2014, 97-98: 43-52. https://doi.org/10.1016/j.clay.2014.06.001
  41. Hojiyev R., Ulcay Y., Celik M.S., Carty W.M. Effect of CEC coverage of hexadecyltributylphosphonium modified montmorillonite on polymer compatibility. Appl. Clay Sci., 2017, 141: 204-211. https://doi.org/10.1016/j.clay.2017.02.036
  42. Fornes T.D., Yoon P.J., Hunter D.L., Keskkula H., Paul D.R. Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer, 2002, 43, no. 22: 5915-5933. https://doi.org/10.1016/S0032-3861(02)00400-7
  43. Patro T.U., Khakhar D.V., Misra A. Phosphonium-Based Layered Silicate-Poly (Ethylene Terephthalate) Nanocomposites: Stability, Thermal and Mechanical Properties. J. Appl. Polym. Sci., 2009, 113, no. 3: 1720-1732. https://doi.org/10.1002/app.29698
  44. Mallakpoura S., Shahangia V. Modification of clay with L-leucine and TiO2 with silane coupling agent for preparation of poly (vinyl alcohol)/organo-nanoclay/modified TiO2 nanocomposites film. Designed Monomers and Polymers, 2012, 15, no. 3: 329-344. https://doi.org/10.1163/156855511X615713
  45. Zahra M., Zulfiqar S., Yavuz C.T., Kweon H.S., Sarwar M.I. Conductive nanocomposite materials derived from SEBS-g-PPy and surface modified clay. Compos. Sci. Technol., 2014, 100: 44-52. https://doi.org/10.1016/j.compscitech.2014.05.025
  46. Huang Y.F., Wang P.C., Lee J.H., Lee J.Y., Liu H.J. Crystallization and thermal properties of PLLA-PEG 600/clay nanocomposites. Polym.-Plast. Technol. Eng., 2015, 54, no. 4: 433-439. https://doi.org/10.1080/03602559.2014.935404
  47. Ezquerro C. S., Ric G. I., Minana C. C., Bermejo J. S. Characterization of montmorillonites modified with organic divalent phosphonium cations. Appl. Clay Sci., 2015, 111: 1-9. https://doi.org/10.1016/j.clay.2015.03.022
  48. Mousa M.H., Dong Y., Davies I.J. Recent advances in bionanocomposites: Preparation, properties, and applications. Int. J. Polym. Mater. Polym. Biomater., 2016, 65, no. 5: 225-254. https://doi.org/10.1080/00914037.2015.1103240
  49. Zhu J., Morgan A. B., Lamelas F. J. Fire properties of polystyrene-clay nanocomposites. Chem. Mater., 2001, 13: 3774-3854. https://doi.org/10.1021/cm000984r
  50. Chen Z., Huang. C, Liu S. [et al.]. Synthesis, characterization and properties of clay-polyacrylate hybrid materials. J. Appl. Polym. Sci., 2000, 75: 796-801. https://doi.org/10.1002/(SICI)1097-4628(20000207)75:6<796::AID-APP8>3.0.CO;2-#
  51. Usuki A., Kawasumi M., Kojima Y., [et al.]. Swelling behavior of montmorillonite cation exchanged for v-amineacidby 1-caprolactam. J. Mater. Res., 1993, 8: 1174-1182. https://doi.org/10.1557/JMR.1993.1174
  52. Usuki A.,Kojima Y., Kawasumi M., [et al.]. Synthesis of nylon-6-clay hybrid. J. Mater. Res., 1993, 8: 1189-1192. https://doi.org/10.1557/JMR.1993.1185
  53. Vaia R. A, Jant K. D., Kramer E. J. [et al.]. Microstructural evaluation of melt-intercalated polymer-organically modified layered silicate nanocomposites. Chem. Mater., 1996, 8: 628-672. https://doi.org/10.1021/cm960102h
  54. Gopakumar T. G., Lee J. A., Kontopoulou M. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer, 2002, 43: 483-571. https://doi.org/10.1016/S0032-3861(02)00403-2
  55. Vaia R. A., Giannelis E. P. Lattice of polymer melt intercalation in organically-modified layered silicates. Macromolecules, 1997, 30: 7990-7998. https://doi.org/10.1021/ma9514333
  56. Shameli K., Bin Ahmad M., Abedini Khorramie S.A.E.I.D., Lotfi R., Zamanian A., Shabanzadeh P. Synthesis of nickel doped cobalt ferrite in presence of SDS with different heat treatment by co-precipitation method. Digest J. Nanomater. Biostruct., 2013, 8, no. 3: 981-985.
  57. Sridhar R., Murthy H.N.N., Karthik B., Mahesh K.R.V., Krishna M., Ratna P. Moisture diffusion through nanoclay/vinylester processed using twin-screw extrusion. J. Vinyl and Additive Technol., 2014, 20, no. 3: 152-159. https://doi.org/10.1002/vnl.21367
  58. Stratigaki M., Choudalakis G., Gotsis A.D. Gas transport properties in waterborne polymer nanocomposite coatings containing organomodified clays. J. Coat. Technol. Res., 2014, 11, no. 6: 899-911. https://doi.org/10.1007/s11998-014-9594-7
  59. Duan Z., Ma J., Xue C., Deng F. Effect of stearic acid/organic montmorillonite on EVA/SA/OMMT nanocomposite foams by melting blending. Journal of Cellular Plastics, 2014, 50, no. 3: 263-277. https://doi.org/10.1177/0021955X14525796
  60. Panek G., Schleidt S., Mao Q., Woljenhauer M., Spiess H.W., Jeschke G. Heteregeneity of the surfactant layer in organically modified silicates and polymer/layered silicate composites. Macromolecules, 2006, 39: 2191-2200. https://doi.org/10.1021/ma0527449
  61. Junior J.P.C., Soares I.L., Luetkmeyer L., Tavares M.I.B. Preparation of highimpact polystyrene nanocomposites with organoclay by melt intercalation and characterization by low-field nuclear magnetic resonance. Chem. Eng. Process. Process Intensif., 2014, 77, no. 3: 66-76. https://doi.org/10.1016/j.cep.2013.11.012
  62. Devi K.S.U., Ponnamma D., Causin V., Maria H.J., Thomas S. Enhanced morphology and mechanical characteristics of clay/styrene butadiene rubber nanocomposites. Appl. Clay Sci., 2015, 114: 568-576. https://doi.org/10.1016/j.clay.2015.07.009
  63. Ejder-Korucu M., Gurses A., Karaca S. Poly (ethylene oxide)/clay nanaocomposites: thermal and mechanical properties. Appl. Surf. Sci., 2016, 378: 1-7. https://doi.org/10.1016/j.apsusc.2016.03.159
  64. Moreira J.F.M., Alves T.S., Barbosa R., De Carvalho E.M., Carvalho L.H. Effect of cis-13-docosenamide in the properties of compatibilized polypropylene/clay nanocomposites. Macromol. Symp., 2016, 367, no. 1, 68-75. https://doi.org/10.1002/masy.201600002
  65. He S., Ji H., Li Y., Qia H., Li J. Effect of clay modification on the structure and properties of sulfonated poly (ether ketone)/clay nanocomposites. Polym. Compos., 2015, 37, no. 9: 2632-2638. https://doi.org/10.1002/pc.23457
  66. Lei F., Yang S., Yang M., Li J., Guo S. Exfoliation of organic montmorillonite in ipp free of compatibilizer through the multistage stretching extrusion. Polym. Bull., 2014, 71, no. 12: 3261-3273. https://doi.org/10.1007/s00289-014-1254-7
  67. Abt T., Bou J.J., Sanchez-Soto M. Isocyanate toughening of pCBT/organoclay nanocomposites with exfoliated structure and enhanced mechanical properties. Express Polym Lett, 2014, 8, no. 12: 953-966. https://doi.org/10.3144/expresspolymlett.2014.96
  68. Savelyev Yuri, Gonchar Аlexey, Travinskaya Tamara. Montmorillonite Modified with Oligourethane Ammonium Chloride and Based Nanostructured Polymers. American Journal of Nanoscience and Nanotechnology, 2013, 1, no. 4: 87-93. https://doi.org/10.11648/j.nano.20130104.13
  69. Yu. V. Savelyev, А.N. Gonchar, T.V. Travinskaya. New montmorillinite modifier for creation of polyurethane acrylate/organoclay nanocomposites by in situ polymerization. Journal of Chemical Engineering and Chemistry Research, 2015, 2, no. 2: 511-520.
  70. O.M. Gonchar. Modification of the montmorillonite surface with oligourethane containing functional amino groups. Chemistry, physics and surface technology, 2019, 10, no. 1: 87-93. https://doi.org/10.15407/hftp10.01.087
  71. Osman A.F., Andriani Y., EdwardsG.A., Schiller T.L., Jack K.S., Morrow I.C., Martin D.J. Engineered nanofillers: impact on the morphology and properties of biomedical thermoplastic polyurethane nanocomposites. RSC Adv., 2012, 2, no. 24: 9151-9164. https://doi.org/10.1039/c2ra21420b
  72. Rooj S., Das A., Stöckelhuber K.W., Mukhopadhyay N., Bhattacharyya A.R., Jehnichen D., Heinrich G. Pre-intercalation of long chain fatty acid in the interlayer space of layered silicates and preparation of montmorillonite/natural rubber nanocomposites. Appl. Clay Sci., 2012, 67-68, no. 2: 50-56. https://doi.org/10.1016/j.clay.2012.03.005
  73. Andriani Y., Morrow I.C., Taran E., Edwards G.A., Schiller T.L., Osman A.F., Martin D.J. In vitro biostability of poly (dimethyl siloxane/hexamethylene oxide)-based polyurethane/layered silicate nanocomposites. Acta Biomater., 2013, 9: 8308-8317. https://doi.org/10.1016/j.actbio.2013.05.021
  74. Achaby M.E., Ennajih H., Arrakhiz F.Z., Kadib A.E., Bouhfid R., Essassi E., Qaiss A. Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of polymer organoclay nanocomposites. Composites Part B Engineering, 2013, 51: 310-317. https://doi.org/10.1016/j.compositesb.2013.03.009
  75. Osman A.F., Kalo H., Hassan M.S., Hong T.W., Azmi F. Pre-dispersing of montmorillonite nanofiller: Impact on morphology and performance of melt compounded ethyl vinyl acetate nanocomposites. J. Appl. Polym. Sci., 2016, 133, no. 11: 1-15. https://doi.org/10.1002/app.43204
  76. Asgari M., Abouelmagd A., Sundararaj U. Silane functionalization of sodium montmorillonite nanoclay and its effect on rheological and mechanical properties of HDPE/clay nanocomposites. Appl. Clay Sci., 2017, 146: 439-448. https://doi.org/10.1016/j.clay.2017.06.035
  77. Nistor M.T., Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J. Therm. Anal. Calorim., 2013, 111, no. 3: 1903-1919. https://doi.org/10.1007/s10973-012-2731-6
  78. Osman A.F., Alakrach A.M., Kalo H., Azmi W.N.W., Hashim F. In vitro biostability and biocompatibility of ethyl vinyl acetate (EVA) nanocomposites for biomedical applications. RSC Adv., 2015, 5, no. 40: 31485-31495. https://doi.org/10.1039/C4RA15116J
  79. Chiou J.Y., Huang T.K., Hsieh K.H., Lin J.J. Fine dispersion of phosphazeneamines and silicate platelets in epoxy nanocomposites and the synergistic fire-retarding effect. J. Polym. Res., 2014, 21, no. 6: 1-9. https://doi.org/10.1007/s10965-014-0467-7
  80. Wu H., Krifa M., Koo J.H. Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Text. Res. J., 2014, 84, no. 10: 1106-1118.

81. Niroumand J.S., Peighambardoust S.J., Shenavar A. Polystyrene-based composites and nanocomposites with reduced brominated-flame retardant. Iran. Polym. J., 2016, 25, no. 7: 607-614. https://doi.org/10.1007/s13726-016-0451-7