2019 (3) 6
https://doi.org/10.15407/polymerj.41.03.190
Studying the nanosystem thermosensitive branched polymer/nanogold/chlorine e6 in Hanks’ balanced salt solution
Yu.I. Harahuts, N.V. Kutsevol, N.P. Melnik, O.M. Nadtoka, P.A. Virych
Taras Shevchenko Kyiv National University Department of Chemistry
60, Volodymyrska str., Kyiv, 010601, Ukraine, garaguts.yulia.fox@gmail.com
Polym. J., 2019, 41, no. 3: 190-197.
Section: Medicine polymers.
Language: Ukrainian.
Abstract:
The comparative studies of the behavior of the branched star-like copolymer Dextran-poly-N-isopropylacrylamide, gold nanoparticles in the polymer matrix, and polymer/nanogold/Chlorine e6 nanosystem have been carried out in water and in the Hanks’ balanced salt solution, used for testing on cell cultures, in the physiological temperature range. It has been shown that nanocomposite dimensional parameters do not undergo significant changes in Hank’s balanced salt solution in comparison with aqueous solutions. The size of gold nanoparticles doesn’t change in the temperature region studied. However, a slight aggregation process in nanosystem has been registered at the presence of photosensitizer. That was caused by the change in the hydrophilic-hydrophobic balance of the polymer matrix. It confirmed the interaction of Chlorine e6 with polymer-nanocarrier. This conclusion is in agreement with the results of UV-visible spectroscopy.
The photodynamic activity of the polymer/nanogold/Chlorine e6 nanosystem has also been tested in vitro. The efficiency of the nanocomposite was not much different in comparison with the efficiency of free Chlorine e6 at the same concentration. Obviously, the aggregation processes and the compaction of the polymer-nanocarrier after LCST have resulted in blocking of the photosensitizer.
Key words: thermosensitive copolymer, Dextran-poly-N-isopropylacrylamide, gold nanoparticles, Chlorine e6, photodynamic therapy.
References
- Gao De, Rodney R., Hao Xu. Nanoparticles for Two-Photon PDT in Living Cells. Nano Letters, 2006, 6, no. 11: 2383-2387. https://doi.org/10.1021/nl0617179
- Rieznichenko L. Features of gold nanoparticles application for bio- and nanosensors. Int J Biosen Bioelectron, 2018, 4 (2): 39-40. https://doi.org/10.15406/ijbsbe.2018.04.00095
- Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, July 1, 184: 537-556. https://doi.org/10.1016/j.talanta.2018.02.088
- Chunlei Zhang, Chao Li, Yanlei Liu, Jingpu Zhang, Chenchen Bao, Shujing Liang, Qing Wang, Yao Yang, Hualin Fu, Kan Wang, Daxiang Cui. Gold nanoclusters-based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Wileyonlinelibrary, 2015. https://doi.org/10.1002/adfm.201403095
- Kangze Liu, Zhonglei He, Hugh J. Byrne, James F. Curtin and Furong Tian. Investigating the Role of Gold Nanoparticle Shape and Size in Their Toxicities to Fungi. Int. J. Environ. Res. Public Health, 2018, 15: 998. https://doi.org/10.3390/ijerph15050998
- Ji Ho Youk, Mi-Kyoung Park, Jason Locklin, Rigoberto Advincula, Jinchuan Yang, and Jimmy Mays. Preparation of Aggregation Stable Gold Nanoparticles Using Star-Block Copolymers. Langmuir, 2002, 18 (7): 2455-2458. https://doi.org/10.1021/la015730e
- Muriel K. Corbierre, Neil S. Cameron, Mark Sutton, Simon G. J. Mochrie, Laurence B. Lurio, Adrian Rühm, and R. Bruce Lennox. Polymer-Stabilized Gold Nanoparticles and Their Incorporation into Polymer Matrices. J. Am. Chem. Soc., 2001, 123 (42): 10411-10412. https://doi.org/10.1021/ja0166287
- Shton I.A., Chumachenko VA, Shishko Ye.D., Kutsevol N.V., Arsentiev K.G., Gamaleya N.F. Synthesis and experimental testing of a new nanocomposite photosensitizer for photodynamic therapy. Photobiology and experimental photomedicine (Ukr.), 2015, 1, no. 2: 54-60.
- Chumachenko V., Kutsevol N., Harahuts Yu., Rawiso M., Marinin A., Bulavin L. Star-like dextran-graft-pnipam copolymers. Effect of internal molecular structure on the phase transition. Journal of Molecular Liquids, 2017, 235: 77-82. https://doi.org/10.1016/j.molliq.2017.02.098
- Chumachenko V.A., Harahuts Yu.I., Kutsevol N.V., Melnik N.P., Nadtoka O.M. The investigation of nanosystem of branched polymer/nanogold in the region of conformational transition of a polymer matrix. Polym.J.(Ukr.), 2018, 40, no. 1: 36-40.
- Yeshchenko O. A., Naumenko A. P., Kutsevol N. V., Maskova D. O., Harahuts Iu. I., Chumachenko V. A., Marinin A. I. Anomalous Inverse Hysteresis of Phase Transition in Thermosensitive Dextran-graft-PNIPAM Copolymer/Au Nanoparticles Hybrid Nanosystem. J. Phys. Chem. C, 2018, 122 (14): 8003-8010. https://doi.org/10.1021/acs.jpcc.8b01111
- Shevtsova V.I., Hayduk P.I. The position of the band of surface plasmon resonance in colloidal solutions of silver and gold nanoparticles, Vestnik BSU (Rus). Ser. 1, 2012, no. 2: 15-18.
- Mohammed Alsawafta, Mamoun Wahbeh, and Vo-Van Truong. Plasmonic Modes and Optical Properties of Gold and Silver Ellipsoidal Nanoparticles by the Discrete Dipole Approximation. J. Nanomaterials, 2012, 2012, Article ID 457968, 10 pages. https://doi.org/10.1155/2012/457968
- Matvienko T., Sokolova V., Prylutska S., Harahuts Yu., Kutsevol N., Kostjukov V., Evstigneev M., Prylutskyy Yu., Epple M., Ritter U. In vitro study of the anticancer activity of various Doxorubicin-containing dispersions. Bioimpacts, 2019, 9, no. 1: 59-70. https://doi.org/10.15171/bi.2019.07
- Telegeev G., Kutsevol N., Chumachenko V., Naumenko A., Telegeeva P., Filipchenko S., and Harahuts Yu. Dextran-Polyacrylamide as Matrices for Creation of Anticancer Nanocomposite. Int. J. Polym. Sci., 2017, Article ID 4929857. https://doi.org/10.1155/2017/4929857
- Kutsevol N., Naumenko A., Chumachenko V., Yeshchenko O., Harahuts Y., Pavlenko V. Aggregation processes in hybrid nanosystem polymer/nanosilver/cisplatin. Ukr. J. Physics, 2018, July 12, 63, no. 6: 513-520. https://doi.org/10.15407/ujpe63.6.513
- Pecora R.. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Research, 2000, 2: 123-131. https://doi.org/10.1023/A:1010067107182
- Shanti R., Hadi A. N., Salim Y. S., Chee S. Y., Ramesh S. and Ramesh K. Degradation of ultra-high molecular weight poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation. RSC Adv., 2017, 7: 112-120. https://doi.org/10.1039/C6RA25313J
- Losytskyy M.Y., Kharchenko R.A., Harahuts Y.I., Shirinyan E.A., Malinovska Y.V., Kutsevol N.V., Yashchuk V.M. Different effect of polymer-incorporated nanoparticles of Au and Ag on hematoporphyrin interaction with graft polymers. Funct. Mater., 2019, 26 (1): 107-113. https://doi.org/10.15407/fm26.01.107
- Chumachenko V. A., Shton I. O., Shishko E. D., Kutsevol N. V., Marinin A. I.and Gamaleia N. F. Branched Copolymers Dextran-Graft-Polyacrylamide as Nanocarriers for Delivery of Gold Nanoparticles and Photosensitizers to Tumor Cells. Сhapter in the Book: Nanophysics, Nanophotonics, Surface Studies, and Applications, Vol. 183 of the series Springer Proceedings in Physics. Ed.: O. Fesenko, L. Yatsenko. 2016: 379-390. https://doi.org/10.1007/978-3-319-30737-4_32