2019 (4) 1

The structure of hydrophobic aerosil in a hydrocarbon medium. The effect of shear field

 

I.P. Getmanchuk, V.V. Davidenko, V.F. Shumsky

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2019, 41, no. 4: 219-229.

 

Section: Structure and properties.

 

Language: Russian.

 

Abstract:

 

Based on the review of micelle formation, concepts of structure formation in deformable single-component and multicomponent polymer and colloid systems, as well as experimental data on the rheology of dispersions of hydrophobic aerosil (Am) in a low-molecular-weight hydrocarbon medium, the use of a “micellar” mechanism for the formation of a bulk structure is considered. A model of such a structure is proposed before, during and after shear deformation, which allows interpretation of experimental data on the rheology of dispersed systems.It is shown that during the reaction formation of the PMMA – PU – Am composition, the conditions of shear deformation of the system correspond to those for which self-organization and fixation of the coagulation rheopexy structure of the nanofiller in the PMMA – PU binary matrix is   possible at the moment it reaches very high viscosity diffusion processes will almost be “frozen”. Two concentration regions of aerosil Am are predicted (before and after the percolation threshold), where we can expect an increase in the mechanical characteristics of the impact-resistant PMMA.

 

Key words: micelle, hydrophobic aerosil, suspension, rheopexy, yield stress, percolation threshold.

References

  1. Malkin A.Ya., Semakov A.V., Kulichihin V.G. Strukturoobrazovanie pri techeneii polimernyih i kolloidnyih sistem. Vyisokomolek. soed., 2010, 52, no. 11: 1879–1902. https://doi.org/10.1134/S0965545X10110039
  2. Shumskiy V.F., Kosyanchuk L.F., Davidenko V.V., Getmanchuk I.P., Antonenko O.I., Syirovets A.P. Reologicheskaya harakteristika dispersii gidrofobizovannogo aerosila v uglevodorodnoy srede. Reopeksiya i porog perkolyatsii. Polim. zhurn., 2018, 40, no. 1: 23–30. https://doi.org/10.15407/polymerj.40.01.023
  3. Malkin А.Ya., Isaev А.I. Rhelogy: concept, methods, applications (Rus.), St. Petersburg: Professiya, 2010: 557.
  4. Khan S.A., Zoeller N.J. Dynamic rheological behavior of fumed silica suspensions. J. Rheol., 1993, 37, no.6:1225–1235. https://doi.org/10.1122/1.550378
  5. Raghavan S.R., Khan S.A. Shear-induced microstructural changes in flocculated suspensions of fumed silica. J. Rheol., 1995, 39, no. 6: 1311–1325. https://doi.org/10.1122/1.550638
  6. Shinoda K. Kolloidnyie poverhnostno-aktivnyie veschestva. M.: Mir, 1966.
  7. Rusanov A.I. Mitselloobrazovanie v rastvorah poverhnostno-aktivnyih veschestv. SPb: Himiya, 1992.
  8. Kuznetsov V.S., Blinov A.P., Usoltseva N.V., Ananeva G.A. Anizotropiya poverhnostnogo natyazheniya v mehanike ellipsoidalnyih mitsell. Kolloid. zhurn., 2007, 69, no. 5: 668–672. https://doi.org/10.1134/S1061933X07050134
  9. Kuznetsov V.S., Usoltseva N.V., Zherdev V.P., Byikova V.V. Termodinamicheskoe issledovanie rastvorov detsilsulfata natriya v oblasti vtoroy kriticheskoy kontsentratsii mitselloobrazovaniya. 1. Ob’emnyie i teploemkostnyie svoystva. Kolloid. zhurn., 2009, 71, no. 6: 766–774.
  10. Kuznetsov V.S., Usoltseva N.V., Zherdev V.P., Byikova V.V. Termodinamicheskoe issledovanie rastvorov detsilsulfata natriya v oblasti vtoroy kriticheskoy kontsentratsii mitselloobrazovaniya. II. Termodinamicheskie funktsii polimorfnogo mitsellyarnogo perehoda i sostavlyayuschie ego energii Gibbsa. Kolloid. zhurn., 2010, 72, no. 2: 211–218.
  11. Safonova E.A., Alekseeva M.V., Smirnova N.A. Vliyanie kislotnosti na mitselloobrazovanie v vodnyih smesyah dodetsildimetilaminoksida i dodetsilsulfata natriya. Kolloid. zhurn., 2009, 71, no 5: 704–711. https://doi.org/10.1134/S1061933X09050202
  12. Maeda H., Muroi Sh., Kakechshi R. Effects of ionic strength on the criticall micelle concentration and the surface excess of dodecyldimetylamine oxide. J. Phys. Chem., 1997, 101, no. 38: 7378–7382. https://doi.org/10.1021/jp9633815
  13. Ikeda S., Tsunoda M., Maeda H. Effects of ionization on micelles size of dimethyldodecylamine oxide. J. Colloid Interface Sci., 1979, 70, no. 3:448–455. https://doi.org/10.1016/0021-9797(79)90052-3
  14. Kaimoto H., Shoho K., Sasaki S., Maeda H. Aggregation numbers of dode-cyldimethylamine oxide micelles in salt solutions. J. Phys. Chem., 1994, 98: 10243–10248. https://doi.org/10.1021/j100091a046
  1. Imaishi Y., Kakehashi R., Nezu T., Maeda H. Dodecyldimethylamine Oxide Micelles in Salutions without Added Salt. J. Colloid Interface Sci., 1998, 197: 309–316. https://doi.org/10.1006/jcis.1997.5242
  2. Maeda H., Yamamoto A., Souda M., Kawasaki H., Hossain K.S., Nemoto N., Almgren M. Effects of protonation on the viscoelastic properties of tetradecyldimethylamine oxide micelles. J. Phys. Chem. B., 2001, 105: 5411. https://doi.org/10.1021/jp0101155
  3. Shikata T., Itatani S. Viscoelastic behavior of aqueous threadlike micellar solutions of oleyldimethylamineoxide. Colloid Polym. Sci., 2003, 281, no. 5: 447–454. https://doi.org/10.1007/s00396-002-0796-7
  4. Miyahara M., Kawasaki H., Garamus V.M., Nemoto N., Kakehashi R., Tanaka S., Annaka M., Maeda H. Oleyldimethylamine Oxide in water. Colloids Surf. B, 2004, 38, no. 3–4: 131–138. https://doi.org/10.1016/j.colsurfb.2004.04.011
  5. Mudzhikova G.V., Brodskaya E.N. Vliyanie protivoionov na strukturu obratnoy mitsellyi po dannyim molekulyarnogo modelirovaniya. Kolloid. zhurn., 2009, 71, no. 6: 784–791. https://doi.org/10.1134/S1061933X0906009X
  6. Voyt A.V., Schipunov Yu.A. Dinamika polimeropodobnyih mitsell letsitina. Reologicheskie izmereniya. Kolloid. zhurn., 2000, 62, no 4: 475–482.
  7. Cates M.E., Candau S.J. Statics and dynamics of worm-like surfactant micelles. J. Phys.: Condens. Matter., 1990, 2, no. 33: 6869–6892. https://doi.org/10.1088/0953-8984/2/33/001
  8. Hoffmann H., Ulbricht W. Structure – Performance Relationships in Surfactants, edited by K. Esumi, M. Ueno, Marcel Dekker, 1997: 285.
  9. Rehage H., Hoffmann H. Viscoelastic surfactant solutions: model systems for rheological research. Mol. Phys., 1991, 74, no. 5: 933–973. https://doi.org/10.1080/00268979100102721
  10. Cates M.E. Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules, 1987, 20, no. 9: 2289–2296. https://doi.org/10.1021/ma00175a038
  11. Cates M.E. Dynamics of flexible polymer like micelles. Polym. Mater. Sci. Eng., 1987, 57: 956–960.
  12. Cates M.E. J. Phys. Chem., 1990, 94: 371. https://doi.org/10.1021/j100364a063
  13. De Zhen P. Idei skeylinga v fizike polimerov: per. s angl., pod red I.M. Lifshitsa, M.: Mir, 1982.
  14. Doy M., Edvards S. Dinamicheskaya teoriya polimerov: per. s angl., pod red. S.I.Kuchanova, V.V.Kislova, M.: Mir, 1998.
  15. Kern F., Lemarechal P., Candau S.J., Cates M.E. Rheological properties of semidilute and concentrated aqueous solutions of cetyltrimethylammonium bromide in the presence of potassium bromide. Langmuir, 1992, 8, no 2: 437–440. https://doi.org/10.1021/la00038a020
  16. Kern F., Lequeux F., Zana R., Candau J.S. Dynamic properties of salt-free viscoelastic micellar solution. Langmuir, 1994, 10 : 1714–1723. https://doi.org/10.1021/la00018a018
  17. Lequeux F. Structure and Rheology of wormlike micelles. Curr. Opin. Colloid Interface Sci., 1996, 1, no. 3: 341–344. https://doi.org/10.1016/S1359-0294(96)80130-0
  18. Rusanov A.I. Udivitelnyiy mir mitsell. Kolloid. zhurn., 2014, 76, no 2: 139–144.
  19. Rusanov A.I., Kuni F.M., Schekin A.K. Termodinamicheskie i kineticheskie osnovyi teorii mitselloobrazovaniya. 1. Obschie polozheniya. Kolloid. zhurn., 2000, 62, no. 2: 199–203.
  20. Kuni F.M., Schekin A.K., Grinin A.P., Rusanov A.I. Termodinamicheskie i kineticheskie osnovyi teorii mitselloobrazovaniya. 2. Pryamoy i obratnyiy potoki molekulyarngyih agregatov cherez aktivatsionnyiy barer mitselloobrazovaniya. Kolloid. zhurn., 2000, 62, no. 2: 204–210.
  21. Kuni F.M., Grinin A.P., Schekin A.K., Rusanov A.I. Termodinamicheskie i kineticheskie osnovyi teorii mitselloobrazovaniya. 3. Nachalnyie stadii mitselloobrazovaniya. Kolloid. zhurn., 2000, 62, no. 4: 505–510.
  22. Kuni F.M., Grinin A.P., Schekin A.K., Rusanov A.I. Termodinamicheskie i kineticheskie osnovyi teorii mitselloobrazovaniya. 4. Kinetika ustanovleniya ravnovesiya v mitsellyarnom rastvore. Kolloid. zhurn., 2001, 63, no. 2: 220–228.
  23. Kuni F.M., Rusanov A.I., Grinin A.P., Schekin A.K. Termodinamicheskie i kineticheskie osnovyi teorii mitselloobrazovaniya. 5. Ierarhiya kineticheskih vremen. Kolloid. zhurn., 2001, 63, no. 6: 792–800. https://doi.org/10.1023/A:1013271803521
  24. Donnely R.J., Fritz D. Hydrodynamic and hydromagnetic stability. Proc. Roy. Soc. London. A, 1960, 258: 101–123. https://doi.org/10.1098/rspa.1960.0177
  25. Muller S.J., Shaqfeh E.S.G., Larson R.G. Experimental studies of the Taylor-Couette flow. J. Non-Newtonian Fluid Mech., 1993, 46: 315–330. https://doi.org/10.1016/0377-0257(93)85053-D
  26. Larson R.G., Muller S.J., Shaqfeh E.S.G. Viscoelastic Taylor–Couette Instability. J. Non-Newtonian Fluid Mech., 1994, 51: 195–225. https://doi.org/10.1016/0377-0257(94)85012-7
  27. Scirocco R., Vermant J., Mewis J. Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions. J. Non-Newtonian Fluid Mech., 2004, 117, no. 2–3: 183–192. https://doi.org/10.1016/j.jnnfm.2004.01.010
  28. Berret J.-F., Porte G., Decruppe J.-P. Inhomogeneous shear flows of wormlike micelles:mA master dynamic phase diagram. Phys. Rev. E, 1997, 55, no. 2: 1668–1676. https://doi.org/10.1103/PhysRevE.55.1668
  29. Cappelaere E., Berret J.-F., Decruppe J.-P., Cressely R., Lindner P. Rheology, birefringence, fnd small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys. Rev. E, 1997, 56, no. 2: 1869–1878. https://doi.org/10.1103/PhysRevE.56.1869
  30. Morelend D.E. Dioksid kremniya. Napolniteli dlya polimernyih kompozitsionnyih materialov: Spravochnoe posobie, per. s angl., Pod red. P.G. Babaevskogo, M.: Himiya, 1981: 736.
  31. Masalova I., Taylor M., Kharatiyan E., Malkin A. Ya. Rheopexy in highly concentrated emulsions. J. Rheol., 2005, 49, no. 4: 839–849. https://doi.org/10.1122/1.1940641
  32. Thakahov R.B., Pshihachev A.G., Baragunova L.V., Al-Haulani Ya. Uprochnenie smesey polyarnyih polimerov malyimi dobavkami sazhi i relaksatsionnyie svoystva smesey. Vyisokomolek. soed. Ser. A, 2014, 56, no. 3: 333–339.