2019 (4) 2

Effect of modified aerosil on the formation process, viscoelastic and mechanical properties of polymer matrices based on PMMA/PU IPNs

 

L.F. Kosyanchuk, O.I. Antonenko, T.D. Ignatova, N.V. Babkina, V.F. Shumsky, L.O. Vorontsova, O.O. Brovko, O.V. Babich, I.P. Getmanchuk

 

Institute of Macromolecular Chemistry NAS of Ukraine

48, Kharkivske shose, Kyiv, 02160, Ukraine

 

Polym. J., 2019, 41, no. 4: 230-239.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The influence of modified hydrophobic aerosil on the formation, viscoelastic and mechanical properties of interpenetrating polymer networks (IPNs) of poly(methyl methacrylate)/polyurethane has been investigated. It was established that the introduction of a nanofiller directly into the reaction mixture and an increase in its concentration causes the slowdown of both reactions: polymerization and urethane formation. The process of phase separation that accompanies chemical reactions takes place in two stages. The nucleation mechanism is preferred at the first stage; the spinodal mechanism is preferred at the second one. The formation of the phase-separated morphology of the obtained structure is confirmed by the results of optical microscopy: at the nanofiller concentration of 1 % (by weight) interconnected periodic structures are formed, and at the concentration of 7 % (by weight) structures with non-uniform distribution of phases are formed. The established relationship between the values of impact strength and the mechanical loss modulus indicates a possible location of the nanofiller mainly in the interfacial region. It has been shown that IPN with 1 % (by weight) of hydrophobic aerosil has the best value of impact strength. It is assumed that the impact strength for the filled IPNs is determined by the coagulation structures formed by the aerosil nanoparticles.

 

Key words: interpenetrating polymer networks, nanofiller, hydrophobic aerosol, interfacial region, phase separation, morphology.

 

References

  1. Michler G.H. High-Impact Rubber-Modified Polymers. In book: Electron microscopy of polymers. Berlin: Springer, 2008: 351–371. ISBN 978-3-540-36352-1.
  2. Kim S.C., Klempner D., Frisch K.C., Radigan W., Frisch H.L. Polyurethane interpenetrating polymer networks. I. Synthesis and morphology of polyurethan–-poly(methyl methacrylate) interpenetrating polymer networks. Macromolecules, 1976, 9, no. 2: 258–263. https://doi.org/10.1021/ma60050a016
  3. Heim Ph., Wrotecki C., Avenel M., Gaillard P. High-impact cast sheets of poly(methyl methacrylate) with low-levels of polyurethane. Polymer, 1993, 34, no. 8: 1653–1660. https://doi.org/10.1016/0032-3861(93)90324-4
  4. Bird S.A., Clary D., Jajam K.C., Tippur H.V., Auad M.L. Synthesis and characterization of high performance, transparent interpenetrating polymer networks with polyurethane and poly(methyl methacrylate. Polym. Eng. Sci., 2013, 53, no. 4: 716–723. https://doi.org/10.1002/pen.23305
  5. IgnatovaT.D., Kosyanchuk L.F., Todosiychuk T.T., Nesterov A.E. Reaction-induced phase separation and structure formation in polymer blends. Composite Interfaces, 2011, 18, no. 3: 185–236. https://doi.org/10.1163/092764411X567530
  6. Lipatov Yu.S., Kosyanchuk L.F., Yarovaya N.V. Effect of the interface with solid on the interfacial region in the blends of linear polymers formed in situ. J. Appl. Polym. Sci., 2006, 102, no. 5: 4646–4651. https://doi.org/10.1002/app.24659
  7. Lipatov Yu.S., Ignatova T.D., Kosyanchuk L.F., Yarovaya N.V. Influence of solid surface on the compatibility in polymer blends produced in situ. Europ. Polym. J., 2006, 42, no. 11: 3102–3107. doi.org/10.1016/j.eurpolymj.2006.08.001
  8. Elias L., Fenouillot F., Majeste J.C., Cassagnau Ph. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer, 2007. 48, no. 10: 6029–6040. https://doi.org/10.1016/j.polymer.2007.07.061
  9. Shumsky V.F., Kosyanchuk L.F., Ignatova T.D., Gom- za Yu.P., Getmanchuk I.P., Antonenko O.I., Babich O.V., Nesin S.D., Maslak Yu.V. Rheokinetics of in situ formation of aerosil filled poly(methylmethacrylate)/polyurethane blend. Polymer J. (Rus.), 2014, 36, no. 1: 57–65.
  10. Napolniteli dlya polimernykh kompozitsionnykh materialov. Pod red. P.G. Babayevskogo. Moscow: Khimiya, 1981: 736.
  11. Shumsky V.F., Kosyanchuk L.F., Davidenko V.V., Getmanchuk I.P., Antonenko O.I., Sirovets A.P. Rheological characteristics of hydrophobic aerosil dispersions in the hydrocarbon medium. Rheopexy and a percolation threshold. Polymer J. (Rus.), 2018, 40, no. 1: 23–30. https://doi.org/10.15407/polymerj.40.01.023
  12. Lipatov Yu.S., Alekseeva T.T., Rosovitskiy V.F. Kineticheskie osobennosti otverzhdeniya gibridnyh svyazuyushchih na osnove setchatogo poliuretana i polibutilmetakrilata. Dokl. AN SSSR (Rus.), 1989, 307, no. 4: 883–887.
  13. Horichko E.Y., Kuksin A.M., Horichko V.V., Neste- rov A.E., Muzhev V.V., Lebedev Y.V. Kinetics of the step-growth polymerization of epoxide in the presence of the linear polyurethane. Effect of the phase separation of components. React. Funct. Polym., 1997, 33, no. 2–3: 351–357. https://doi.org/10.1016/S1381-5148(97)00074-6
  14. Lipatov Yu.S., Kosyanchuk L.F., Nesterov A.E. Phase separation in blends of linear polymеrs formed in situ according to different mechanisms. Polym. Intern., 2002. 51, no. 9: 772–780. https://doi.org/10.1002/pi.925
  15. Gladyshev G.P., Popov V.A. Radical polymerization at high conversions. (Rus.). Moscow: Nauka, 1974: 242.
  16. Lipatova T.E., Shejnina L.S. O vliyanii aerosila na kinetiku formirovaniya linejnyh poliuretanov. Vysokomol. Soedin. Ser. B, 1976, 18, no. 1: 44–47.
  17. Shejnina L.S. Issledovanie zakonomernostej processa obrazovaniya poliuretanov v mnogokomponentnyh sistemah: Dis. kand. him. Nauk, Kiev, 1983: 176.
  18. Lipatov Yu.S., Kosyanchuk L.F., Antonenko O.I. Kinetics of the in situ formation of a blend of two linear polymers: effect of aerosil. Vysokomol. Soedin. Ser. B, 2005, 47, no. 6: 1042–1045.
  19. Van Aartsen J.J., Smolders C.A. Light scattering of polymer solutions during liquid-liquid phase separation. Eur. Polym. J., 1970, 6, no. 8: 1105–1112. https://doi.org/10.1016/0014-3057(70)90135-7
  20. Okada M., Fujimoto K., Nose T. Phase separation induced by polymerization of 2-chlorostyrene in a polystyrene/dibutyl phthalate mixture. Macromolecules, 1995, 28, no. 6: 1795–1800. https://doi.org/10.1021/ma00110a011
  21. Kosyanchuk L.F., Ignatova T.D., Grishchenko V.K., Bus’ko N.A., Antonenko O.I., Babich O.V., Sil’chen- ko Yu.A., Maslak Yu.V., Shumskii V.F. Features of the in situ formation of a linear poly(methyl methacrylate)–crosslinked polyurethane blend in the presence of an oligomeric initiator. Polymer Science, Ser. A, 2014, 56, no. 2: 173–183. https://doi.org/10.1134/S0965545X14020072
  22. Siggia E.D. Late stages of spinodal decomposition in binary mixtures. Phys. Rev. A, 1979, 20, no. 2: 595–605. https://doi.org/10.1103/PhysRevA.20.595
  23. Lipatov Yu.S., Kosyanchuk L.F., Ignatova T.D., Antonenko O.I. Relationship of chemical kinetics and phase separation in filled blends of linear polymers formed in situ. Ukr. Chem. J. (Rus.), 2007, 73, no. 5: 53–58.
  24. Brovko O.O. Obernennya faz v poliuretanovmisnykh vzayemopronyknykh polimernykh sitkakh ta yikhni vlastyvosti: Avtoref. dys… d-ra khim. nauk, Kyiv, 2007: 36.
  25. Jyotishkumar P., Ozdilek C., Moldenaers P., Sinturel C., Janke A., Pionteck J., Thomas S. Dynamics of phase separation in poly(acrylonitrile-butadiene-styrene)-modified epoxy/DDS system: kinetics and viscoelastic effects. J. Phys. Chem. B, 2010, 114, no. 42: 13271–13281. https://doi.org/10.1021/jp101661t
  26. Babkina N.V., Ignatova T.D., Kosyanchuk L.F., Antonenko O. I., Vorontsova L.A., Babich O.V. Features of the formation, the phase structure, viscoelastic and mechanical properties of the binary polymer matrices based on poly(methyl methacrylate), modified by crosslinked polyurethane. Polymer J. (Ukr.), 2016, 38, no. 1: 24–33.
  27. Lipatov Yu.S. Fiziko–khimicheskiye osnovy napolneniya polimerov. Moscow: Khimiya, 1991: 260. ISBN 5-7245-0453-7
  28. Lipatov Yu.S. Phase separation in filled polymer blends. J. Macromol. Sci. Part B: Physics, 2006, 45, no. 5: 871–888. https://doi.org/10.1080/15583720600824615
  29. Kosyanchuk L.F., Babkina N.V., Yarovaya N.V., Antonenko O.I. Features of thermal and viscoelastic behavior of filled blends of linear polyurethane and poly(methyl methacrylate), formed in situ. Influence of the nature of polyurethane. Voprosy Khimii i Khimicheskoi Tekhnologii. (Rus.), 2009, no. 2: 53–60.
  30. Kosyanchuk L.F., Yarova N.B., Babkina N.V. Features of thermal and vyazkouprugoo behavior formed in situ filled with mixtures of linear polyurethane and polystyrene. Polymer J. (Rus.), 2013, 35, no. 4: 362–368.
  31. Babkina N.V., Alekseeva T.T., Grishchuk S.I., Lipa- tov Yu.S. Influence of the kinetics of the formation of semi-interpenetrating polymer networks on the viscoelastic properties in the presence of modified aerosils. Ukr. Chem. J. (Rus.), 2002, 68, no. 8: 107–110.
  32. Nil’sen L. Mekhanicheskiye svoystva polimerov i polimernykh kompozitsiy. Moscow: Khimiya, 1978: 312.
  33. Ferri Dzh. Vyazkouprugiye svoystva polimerov. Moscow: IL, 1963: 552.
  34. Lipatov Yu.S. Fizicheskaya khimiya napolnennykh polimerov. Moscow: Khimiya, 1977: 304.
  35. Tkhakakhov R.B., Pshikhachev A.G., Baragunova L.V., Al-Khaulani Ya. The strengthening of polar polymer blends with small carbon additives and the relaxation properties of the blends. Polymer Science, Ser. A, 2014, 56, no. 3: 346–351. https://doi.org/10.1134/S0965545X1403016X
  36. Rebinder P.A. Fiziko-khimicheskaya mekhanika dispersnykh struktur. In book: Fiziko-khimicheskaya mekhanika dispersnykh struktur. Moscow: Nauka, 1966: 3–16.
  37. Kuleznev V.N. Smesi polimerov. Moscow: Khimiya, 1980: 304.