2019 (4) 5

Extension of the pavement service life by bitumen modification with thermoplastic dynamic vulcanizates based on polymer wastes

 

O.P. Grigoryeva1, P. Akhmedzade2, S.H. Kasanagh2, O.M. Starostenko1, A.M. Fainleib1

 

1Institute of macromolecular chemistry of the NAS of Ukraine

48, Kharkivs’ke shose, Kyiv, 02160, Ukraine

2Ege University, Bornova, Izmir, Turkey

 

Polym. J., 2019, 41, no. 4: 253-263.

 

Section: Structure and properties.

 

Language: Ukrainian.

 

Abstract:

The effect of a complex modifier with the structure of thermoplastic dynamic vulcanizate (TDV) obtained by dynamic vulcanization of reactivated ground tire rubber (RGTR) in a thermoplastic matrix of the recycled high density polyethylene (HDPER) and a copolymer of ethylene-propylene-diene monomer (EPDM) on the physical and mechanical characteristics of the polymer-bitumen binders based on a road bitumen is studied. By means of traditional methods and European standards, as well as using the modern international system of international standards “Superpave”, it is established that addition of this complex modifier to the bitumen provides, depending on the TDV content, strengthening of the complex of physical and mechanical parameters of the polymer-bitumen binders obtained. Thus, in contrast to the individual bitumen, in the samples of polymer-bitumen binders with increasing the TDV content from 3 to 7 wt.% an increase in the value of the softening temperature (Ts) by 3–13 °C, decreasing of 1,3–1,7 times of the penetration value (P25, at T = 25 °C) and a corresponding increase of 1,1–3,3 times of the penetration index (IP). Additionally, for the polymer-bitumen binders created significant increase of the complex shear modulus (G*) and the rutting parameter (G*/sin d), as well as high-temperature part of Performanñå Grades (PG) with increasing TDV content have been fixed. Thus for the polymer-bitumen binder sample with 7 wt.% TDV in comparison with unmodified bitumen the modulus G* was found to be higher by k » 8–13,4 times, the rutting parameter G*/sin d increased by 9,8–17,7 times, and finally a significant increase of high-temperature part of Performanñå Grades (PG) of bitumen binders from PG 64-Y for unmodified bitumen binder to PG 82-Y for the polymer-bitumen binder have been observed. Therefore, this sample of binder will work effectively at a pavement temperature up to T » 82 °C. The conclusion is made about the prospects of using the polymer-bitumen binders developed applying complex modifier of TDV structure in the pavements to extend their service life, increase resistance to shear loads, resistance to the formation of ruts, as well as resistance to high ambient temperatures.

 

Keywords: thermoplastic dynamic vulcanizates, recycled polyethylene and post-consumer tire rubber, road bitumen, polymer-bitumen binder, physical-mechanical properties.

References

  1. Internet resource: https://news.finance.ua/ua/news/-/444116/shho-bude-z-dorogamy-v-2019-rotsi-hajvej-do-gdanska-i-remont-yam
  2. Internet resource: https://www.epravda.com.ua/rus/news/2018/06/4/637414/
  3. Stepura V.S., Belyatynskiy A.O., Kuzhel N.V. Osnovy ekspluatatsii avtomobilnyh dorig i aerodromiv. Кyiv: NAU (Ukr.), 2013: 204. ISBN 978-966-598-833-5
  4. Khimerik T.Yu., Krayushkina K.V., Belyatynskiy A.O. Likvidatsiya koliynosti – zasib pidvyshchennya dovgovichnosti dorozhnyogo odyagu. Zbirnyk naukovyh prats, Seriya: Galuzeve mashinobuduvannya, budivnytstvo, PoltNTU (Ukr.), 2016, 1, no. 46, 263-270.
  5. Sheludenko B.A., Sheludenko L.S. Mekhanika kontaktnogo ruynuvannya avtomobilnyh dorig. Kamyanets-Podilskiy: Kaligraf LTD, 2016: 66.
  6. Zolotarev V.A. Dorozhnye bitumnye vyazhushchie i asfaltobetony. Kh.: KhNАHU, 2014: 180. ISBN-978-966-303-567-3.
  7. Pyrig Y., Galkin A., Svynarov M., Koriuk V., Iliyn Y., Zolotariov V. Аsphaltpolymer-concrete made by adding polymer directly in a mixture, Bulletin of KhNADU (Ukr.), 2015, 68: 85-91. https://dspace.khadi.kharkov.ua/dspace/handle/123456789/1137
  8. Perez-Lepe A., Martı́nez-Boza F.J., Gallegos C., Gonzslez O., Munoz M.E., Santamaria A, Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen. Fuel, 2003, 82, no. 11: 1339-1348. https://doi.org/10.1016/S0016-2361(03)00065-6
  9. Xiaohu L., Isacsson U. Modification of road bitumens with thermoplastic polymers, Polym, Test., 2000, 20, no 1: 77-86. https://doi.org/10.1016/S0142-9418(00)00004-0
  10. Hınıslıoglu S., Agar E. Use of waste high-density polyethylene as bitumen modifier in asphalt concrete mix. Mat. Lett., 2004, 58, no 3–4: 267-271. https://doi.org/10.1016/S0167-577X(03)00458-0
  11. Casey D., McNally C., Gibney A., Gilchrist M.D. Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling, 2008, 52, no 10: 1167-1174. https://doi.org/10.1016/j.resconrec.2008.06.002
  12. Chiu C.-T. Use of ground tire rubber in asphalt pavements: Field trial and evaluation in Taiwan, Resources, Conservation and Recycling, 2008, 52, no 3: 522-532. https://doi.org/10.1016/j.resconrec.2007.06.006
  13. Navarro F.J., Partal P., Martinez-Boza F., Gallegos C. Thermo-rheological behavior and storage stability of ground tire rubber-modified bitumens, Fuel, 2004, 83, no 14-15: 2041-2049. https://doi.org/10.1016/j.fuel.2004.04.003
  14. Grygoryeva O.P., Fainleib O.M., Mozgovyy V.V., Kolesnyk Yu.R. Method of utilization of tire cord, Ukrainian Patent 91636, August 10, 2010.
  15. Ahmedzade P., Fainleib A., Gunay T., Grygoryeva O. Modification of bitumen by electron beam irradiated recycled low density polyethylene, Constr. Build. Mat., 2014, 69, no 1: 1-9. https://doi.org/10.1016/j.conbuildmat.2014.07.027
  16. Ahmedzade P., Fainleib A., Gunay T., Grigoryeva O., Kultayev B., Starostenko O. Influence of ion irradiated recycled polyethylene on physical properties of bituminous binder. Adv. Mat. Res., 2015, 1125: 360-364.

https://doi.org/10.4028/www.scientific.net/AMR.1125.360

  1. Ahmedzade P., Günay T., Altun S., Kultayev B., Fainleib A., Grigoryeva O., Starostenko O. Usage of ion-irradiated recycled polypropylene as modifier in bituminous binder. In book: Bearing Capacity of Roads, Railways and Airfields. Eds.: A, Loizos, I, Al-Qadi, T, Scarpas. London: Taylor & Francis Group, 2017: 394. ISBN 978-1-138-29595-7.
  2. Chernov S.A., Kaklyugin A.V., Nikitina A.N., Golyubin K.D. Vliyanie polimerno-dispersno-armiruyushchey dobavki na ekspluatatsionnye svoystva asfaltobetona. Vestnik MGSU (Rus.), 2017, no. 6: 654-660.
  3. Grigoryeva O., Fainleib A., Tolstov A., Starostenko O., Lievana E., Karger-Kocsis J. Thermoplastic elastomers based on recycled HDPE, EPDM and ground tire rubber. J. Appl. Polym. Sci., 2005, 95: 659-671. https://doi.org/10.1002/app.21177
  4. European Standard EN 12591:2009, Bitumen and bituminous binders – Specifications for paving grade bitumens.
  5. European Standard EN 1426:2007, Bitumen and bituminous binders. Determination of needle penetration.
  6. European Standard EN 1427:2007, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method.
  7. European Standard EN 14023:2005 Bitumen and bituminous binders – Framework specification for polymer modified bitumens.
  8. Study for a Future Strategic Highway Research Program Project Description. Web page on the TRB web site. National Academy of Sciences. Washington D.C. http://www4.trb.org/trb/newshrp.nsf. Accessed 18 November 2001.
  9. Superpave System. Web page on the NECEPT web site. The Pennsylvania Transportation Institute, Pennsylvania State University. University Park, PA. Accessed 18 November 2001.
  10. Internet resource: https://www.telko.com/ru/articles/superpave-методы-испытания-битумного-вяжущего
  11. Blajeyovskiy K., Olshackiy Y., Pechakovskiy H. Bitumnyy spravochnik (Rus.): Chemikow, Płock, Poland, 2014, 142 p.
  12. AASHTO TP5-97. Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR).
  13. European Standard EN 12607-1. Bitumen and bituminous binders – Determination of the resistance to hardening under influence of heat and air – Part 1: RTFOT method.