2019 (4) 6

Effect of critical filler content on structural and fractal percolation properties of filled vinyl polymers

 

T.M. Shevchuk1, M.A. Bordyuk2, V.V. Krivtsov1, V.A. Mashchenko3

 

1Rivne State Humanitarian University

31, Plastova Str., Rivne, 33028, Ukraine

2Rivne Medical Academy

53, М. Karnaukhova Str., Rivne, 33000, Ukraine

3Odessa State Academy of Technical Regulation and Quality

15, Kovalska Str., Odessa, 65020, Ukraine

 

Polym. J., 2019, 41, no. 4: 264-270.

 

Section: Physics of polymers.

 

Language: Ukrainian.

 

Abstract:

In the research fractal dimension structure formation and critical percolation indexes have been defined for filled linear amorphous vinyl polymers with the critical content of mineral filler. To define structural properties of composite polymer materials and their viscoelastic properties ultrasonic methods have been used operating machine where longitudinal and transverse ultrasonic waves go through the polymer sample immersed in fluid. On the basis of model-filled polymer and the cluster model of amorphous state, microparameters structural organization are estimated in particular: the period macrolattice filler, sizes of the boundary layer, the volume and diameter of the clusters, the fractal dimension of the filler surface and microcavities fluctuation of free volume. It has been shown that the structural parameters of filled polymers are nanoscale and structural organization consists of nano-objects. PVC- and PVB-systems with critical content of the filler could be modified as quasi-homogeneous crystal, between particles of which phase – boundary is situated. In the following model interaction between filler particles happens due to polymer structural formations in the form of nanoformations, having in turns areas of order and chaos. Fractal percolation approach in structure formation investigation of PVC and PVB-systems with critical content of the filler showed that metal fillers are more active at phase – boundary formation in the disbursement of polymer-filler, if to compare with mineral fillers. It has been shown that phosphogypsum modified surface fractions are active centers of interface layer formations on boundary polymer – filler. Comparing maximums of filled with phosphogypsum and its modified forms percolation clusters and PVC systems coordinate numbers enabled to correlate these dimensions.

 

Keywords: filled polymers, fractal dimension, Poisson’s ratio, percolation cluster model, flexibility of macromolecules.

References

  1. Broitman E. Innovations in polymers and composite materials. e-Polymers, 2016, 17, no.1: 1-3. https://doi.org/10.1515/epoly-2016-0311.
  2. Odegard G.M., Bandyopadhyay A. Physical Aging of Epoxy Polymers and Their Composites. Journal of Polymer Science. Part B: Polymer Physics, 2011, 49, no.24: 1695‐1716. https://doi.org/10.1002/polb.22384.
  3. Weitsman Y. J. Fluid Effects in Polymers and Polymers Composites. Springer Science + Business Media, 2012: 176. ISBN 978-1-4614-1058-4.
  4. Bordyuk М.А., Shеvchuк Т.М., Коlupаev B.S. Fіziка pоlіmеrіv. Теоrіya. Rіvnе: RDGU, 2012: 484.
  5. Sun Y., Pugno N., Hierarchical Fibers with a Negative Poisson’s Ratio for Tougher Composites. Materials, 2013, 6, no.2: 699-712. https://doi.org/10.3390/ma6020699.
  6. Sinha AK, Narang HK, Bhattacharya S. Mechanical properties of natural fibre polymer composites. J. Polym. Eng., 2017; 37, no. 9: 879–895. https://doi.org/10.1515/polyeng-2016-0362.
  7. Hamanaka S, Nonomura C., Thi TBN, Yokoyama A. Correlation between fiber orientation distribution and mechanical anisotropy in glass-fiber-reinforced composite materials. J. Polym. Eng., 2019, 39, no.7: 653-661. https://doi.org/10.1515/polyeng-2018-0371.
  8. Paul D.R., Robeson L.M. Polymer nanotechnology: Nanocomposites. Polymer, 2008, no.49: 3187–3204. https://doi.org/10.1016/j.polymer.2008.04.017.
  9. Shevchuk Т.М., Bordyuk М.А., Krivtsov V.V., Mashchenko V.A. Fraktalno-perkolyatsiyne modelyuvannya strukturnoyi orhanizatsiyi napovnenoho polivinilkhlorydu. Polymer Journal, 2019, 41, no.2: 109-115. https://doi.org/10.15407/polymerj.41.02.109.
  10. Novikov V.U., Kozlov G.V. Fractal analysis of macromolecules. Russ. Chem. Rev., 2000, 69, no.4: 347-366. https://doi.org/10.1070/RC2000v069n04ABEH000523.
  11. Blavatska V., von Ferber C., Holovatch Yu. Star copolymers in porous environments: Scaling and its manifestations. Phys. Rev. E, 2011, 83, no.1: 011803(1)-011803(9). https://doi.org/10.1103/PhysRevE.83.011803.
  12. Janssen H.-K., Stenull O. Scaling exponents for a monkey on a tree: Fractal dimensions of randomly branched polymers. Phys. Rev. E., 2012, 85, no.5: 051126-1-15. https://doi.org/10.1103/PhysRevE.85.051126.
  13. Haydukivska K., Blavatska V. Conformational properties of polymers in anisotropic environments. Condensed Matter Physics, 2014, 17, no. 2, 23301: 1–15. https://doi.org/10.5488/CMP.17.23301.
  14. Blavatska V., Fricke N., Janke W. Polymers in disordered environments. Condensed matter physics, 2014, 17, no.3: 33604(1) – 33604(11). https://doi.org/10.5488/CMP.17.33604.
  15. Novikov V.U., Kozlov G.V. Structure and properties of polymers in terms of the fractal approach. Russ. Chem. Rev., 2000, 69, no.6: 523-549. https://doi.org/10.1070/RC2000v069n06ABEH000592.
  16. Sen S, Widgeon S. On the Mass Fractal Character of Si-Based Structural Networks in Amorphous Polymer Derived Ceramics. Nanomaterials, 2015, no.5: 366-375. https://doi.org/10.3390/nano5010366.
  17. Maschenko V.A., Panchuk O.O., Sadovenko I.O., Bordyuk M.A. Eksperimentalna ustanovka dlya vimiryuvannya pruzhnih parametriv girskih porid. Bulletin of Engineering Academy of Ukraine, 2012, no. 3-4: 60-64.
  18. Shevchuk T.M., Bordyuk M.A. Fraktal’nist ta parametr Gryunayzena polimernih sistem z vid’emnim koefitsientom Puassona. Fizika i himiya tverdogo tila, 2016, 17, no.4: 476-482. https://doi.org/10.15330/pcss.17.4.476-481.
  19. Kozlov G.V. Structure and properties of particulate-filled polymer nanocomposites. Phys. Usp., 2015, 58: 33–60. https://doi.org/10.3367/UFNe.0185.201501c.0035.
  20. Kozlov G.V., Novikov V.U. A cluster model for the polymer amorphous state. Phys. Usp., 2001, 44: 681–724. https://doi.org/10.1070/PU2001v044n07ABEH000832.