2020 (1) 5

https://doi.org/10.15407/polymerj.42.01.036

Thermomechanical and relaxation properties of polymer composites of pentonAgI  and penton – CNT

 

M.O. ROKYTSKYI, Dragomanov National Pedagogical University, 9, Pirogova str., Kyiv, 01601, Ukraine

ORCID: 0000-0002-1057-5057

V.L. DEMCHENKO, Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine E-mail: dvaleriyl@ukr.net

ORCID: 0000-0001-9146-8984

H.V. ROKYTSKA, Dragomanov National Pedagogical University, 9, Pirogova str., Kyiv, 01601, Ukraine

ORCID: 0000-0002-3258-4640

A.M. SHUT, Dragomanov National Pedagogical University, 9, Pirogova str., Kyiv, 01601, Ukraine

ORCID: 0000-0003-1969-1035

M.I. SHUT,

Dragomanov National Pedagogical University, 9, Pirogova str., Kyiv, 01601, Ukraine

ORCID: 0000-0001-6342-2129

 

Polym. J., 2020, 42, no. 1: 36-43.

 

Section: Structure and properties.

 

Language: Ukrainian.

Abstract:

The features of thermomechanical behavior of composites based on penton and two types of fillers – silver iodide and multilayer carbon nanotubes are investigated. It was found that the addition of fillers to the penton in small quantities leads to a different resultant form of dependence curves ε = f(T), which is explained by the unequal structural influence of these fillers. When filling CNT composites, more ordered penton regions are formed than when using AgI. It was revealed that the addition of silver iodide particles to the penton in the amount of 0,50–0,75 vol. % increases the total relative deformation of composites, but the same additives of carbon nanotubes cause the opposite effect. It is shown that in the temperature range 273 < T < 353 K on the curves of the temperature dependence of the relative deformation of the composites penton – AgI and penton – CNT there is a two-stage process of glass transition to penton – low-temperature and high-temperature.

Key words: penton, silver iodide, carbon nanotubes, composites, thermomechanical properties.

REFERENCES

  1. Mulyn Yu.A., Yartsev Y.K. Pentaplast. L.: Khymyia, 1975: 120.
  2. Gurevich Yu.Ya. Tverdyie elektrolityi. M.: Nauka, 1986: 206.
  3. Lipatov Yu.S. Mezhfaznye yavleniya v polimerakh. K.: Naukova dumka, 1980: 260.
  4. Shut M.I., Rokitska G.V., Rokitskiy M.O., Levandovskiy V.V., Oranska O.I. Rentgenografichni doslidzhennya matrichno-dispersnoyi sistemi na osnovi pentaplastu ta yodidu sribla, Naukoviy chasopis NPU Imeni M.P. Dragomanova, Seriya 1. FIziko-matematichni nauki, 2011, 12: 6–12.
  5. Godovskiy Yu.K. Teplofizicheskie metodyi issledovaniya polimerov. M.: Himiya, 1976: 216.
  6. Simha R., Boyer R.F. On a general relation involving the glass temperature and coefficients of expansion of polymers, Journal of Chemical Physics, 1962, 37: 1003–1007. https://doi.org/10.1063/1.1733201
  7. Fox T.G., Flory P.J. Second-order transition temperatures and related properties of polystyrene. Influence of molecular weight, Journal of Polymer Science, 1952, 14: 315–319. https://doi.org/10.1002/pol.1954.120147514