2020 (2) 1

https://doi.org/10.15407/polymerj.42.02.071

HEAT-RESISTANT POLYMER COMPOSITE MATERIALS BASED ON HETEROCYCLIC MATRICES

A.M. Fainleib

Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine

e-mail: fainleib@i.ua

ORCID: 0000-0001-8658-4219

Polym. J., 2020, 42, no. 2: 71-84.

Section: Review.

Language: Ukrainian.

Abstract:

The literature review highlights synthesis features, chemical structure and physical properties of heterocyclic polymer matrices for composite materials based on bisphthalonitriles (phthalonitrile resins), promising binders for composites, which can be applied at high temperatures (300–400 °C) and high humidity in the details of aircrafts and microelectronics. Phthalonitrile monomers are synthesized by polycondensation from nitrophthalonitrile and bisphenols. Effective initiators of polymerization are diamines, the activity of which is determined by their chemical structure; phenols, metal salts, also catalyze the process. At temperatures above 200 °C, bisphthalonitriles polymerize to form a set of heterocycles, such as isoindoline, triazine and phthalocyanine, linked to a common polymer network. The ratio of the heterocycles in the polymer network is determined by the temperature and duration of the heat treatment. The rigidity of the structure of the polymer synthesized at temperatures up to 300 °C does not allow reaching a complete conversion. To achieve a conversion of 95 % and higher, post-curing is required at temperatures of 325–425 °C. The carbon plastics obtained based on phthalonitrile resins by the autoclave method demonstrate high physical-mechanical characteristics, which are maintained at a high level when tested at temperatures of 300–400 °C, as well as in conditions of high humidity. In recent years, publications have appeared on the synthesis and study of structure and properties of bisphthalonitrile nanocomposites with inorganic nanofillers, which additionally increase the glass transition temperature of bisphthalonitrile polymerization products to 450–550 °C. For the nanocomposites obtained, the elastic modulus is ~ 3,2 GPa in a wide temperature range (20–600 °C), and a sample subjected to thermal degradation when heated from 20 to 900 °C loses only about 30 % of the mass and retains its integrity (film). The ultra-high temperature resistant nanocomposites were obtained with a temperature of 5% mass loss Td5% = 551 °C and char residue of 92,2% at 800 °C.

 

Keywords: polymer composites, heterocyclic matrices, bisphthalonitriles, heat-resistant binders, nanocomposites.

 

References

  1. Pat. 4234712 USA, IC5 C08G 73/00. Polyphthalocyanine resins. T.M. Keller, J.R. Griffith. Publ. 18.11.1980.
  2. Pat. 6001926 USA, IC5 C08G 73/00. Fiber-reinforced phthalonitrile composite cured with low-reactivity aromatic amine curing agent. S.B. Sastri, M.D. Greenbelt, T.M. Keller. Publ.14.12.1999.
  3. Keller T.M., Price T.R., Foranski C.F. Characterization of the Cure of Diether-Linked Phthalonitrile Resins. J. Am. Chem. Soc., 1982, 26: 337–350. https://doi.org/10.1021/ bk-1982-0195.ch026
  4. Sheng H., Peng X., Guo H., Yu X., Tang C., Qu X., Zhang Q. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer. Mater. Chem. Phys., 2013, 142, no. 2–3: 740–747. https://doi.org/10.1016/ j.matchemphys. 2013.08. 033
  5. Peng X., Sheng H., Guo H., Naito K., Yu X., Ding H., Qu X., Zhang Q. Synthesis and properties of a novel high-temperature diphenyl sulfone-based phthalonitrile polymer. High Perform. Polym., 2014, 26, no.7: 837–845. https://doi.org/10.1177/ 0954008314 532479
  6. Yu X., Naito K., Kang C., Qu X.-W., Zhang Q.-X. Synthesis and properties of a high-temperature naphthyl-based phthalonitrile polymer. Macromol. Chem. Phys., 2013, 214, no. 3: 361–369. https://doi.org/10.1002/macp.201200492
  7. Sastri S.B., Keller T.M. Phthalonitrile polymers: cure behavior and properties. J. Polym. Sci., Part A: Polym. Chem., 1999, 37, no. 13: 2105–2111. https://doi.org/10.10 02/ (SICI)1099-0518(19990701)37:13<2105::AID-POLA25>3.0.CO;2-A
  8. Keller T.M. Phthalonitrile-based high temperature resin. J. Polym. Sci., Part A: Polym. Chem., 1988, 26, no. 12: 3199–3212. https://doi.org/10.1002/pola.1988.080261207
  9. Babkin A.V. Vysokotermostoykie ftalonitrilnye matritsy i polimernye kompozitsionnye materialy na ih osnove. Moskva: MGU, 2016: 143.
  1. Derradji M., Wang J., Liu W.B. Phthalonitrile resins and composites. properties and applications. William Andrew. New York: Elsevier, 2018: 404. ISBN:9780128129661.
  2. Pat. 4649189 USA, IC5 C08G 63/44. Process for preparing phthalocyanine polymer from imide containing bisphthalonitrile. B.N. Achar, G.M. Fohlen, J.A. Parker. Publ. 10.03.1987.
  3. Pat. 5292854 USA, IC5 C08G 63/44. Synthesis of phthalonitrile resins containing ether and imide linkages with aromatic diamine curing agent. T.M. Keller. Publ. 08.03.1994.
  4. Keller T.M. Imide-containing phthalonitrile resin. Polymer, 1993, 34, no. 5: 952–955. https://doi.org/10.1016/0032-3861(93)90213-T
  5. Achar B.N., Fohlen G.M., Parker J.A. Studies on heat‐resistant thermosetting phthalocyanine polymers. J. Appl. Polym. Sci., 1984, 29, no. 1: 353–359. https://doi.org/10.1002/app.1984.070290133
  6. Liu C., Wang J.Y., Lin E.C., Zong L., Jian X. Synthesis and properties of phthalonitrile-terminated oligomeric poly(ether imide)s containing phthalazinone moiety. Polym. Degrad. Stab., 2012, 97, no. 3: 460–468. https://doi.org/10.1016/j.polymdegradstab.2011.11.001
  7. Laskoski M., Dominguez D.D., Keller T.M. Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability. Polymer, 2007, 48, no. 21: 6234–6240. https://doi.org/10.1016/j.polymer.2007.08.028
  8. Keller T.M. Synthesis and polymerization of multiple aromatic ether phthalonitriles. Chem. Mat. 1994, 6, no. 3: 302–305. https://doi.org/10.1021/cm000 39a009
  9. Bulgakov B.A., Babkin A.V., Dzhevakov P.B., Bogolyubov A. A., Sulimov A.V., Kepman A.V., Kolyagin Yu G., Guseva D.V., Rudyak V.Yu, and Chertovich A.V. Low-melting phthalonitrile thermosetting monomers with siloxane- and phosphate bridges. Eur. Polym. J., 2016, 84: 205–217. https://doi.org/10.1016/ j.eurpolymj. 2016.09.013
  10. Babkin A.V., Zodbinov E.B., Bulgakov B.A., KepmanA.V., AvdeevV.V. Low-melting siloxane-bridged phthalonitriles for heat-resistant matrices. Eur. Polymer. J., 2015, 66: 452–457. https://doi.org/10.1016/j.eurpolymj.2015.03.015
  11. Dominguez D.D., Keller T.M. Phthalonitrile-Epoxy Blends: Cure Behavior and Copolymer Properties. J. Appl. Polym. Sci., 2008, 110: 2504–2515. https://doi.org/ 10.1002/app.28817
  12. Xu Y., Dayo A.Q., Derradji M., Wang J., Liu W., Song S., Tang T. Copolymerization of bisphthalonitrile/benzoxazine blends: Curing behavior, thermomechanical and thermal properties. React. Funct. Polym. 2018, 123: 97–105. https://doi.org/10.1016/ j.reactfunctpolym.2017.12.013
  13. Li X., Yu B., Zhang D., Lei J., Nan Z. Cure behavior and thermomechanical properties of phthalonitrile–polyhedral oligomeric silsesquioxane copolymers. Polymers, 2017, 9, no. 12: 334 (1–13). https://doi.org/10.3390/polym9080334 23. Sheng H., Peng X., Guo H., Yu X., Naito K., Qu X., Zhang Q. Synthesis of high performance bisphthalonitrile resins cured with self-catalyzed 4-aminophenoxyphthalonitrile. Thermochim. Acta, 2014, 577: 17–24. https://doi.org/ 10.1016/j.tca.2013.12.010
  14. Kumar D., Razdan U., Gupta. Heat-resistant polymers from melt-processable bisimido-bisphthalonitriles. J. Polym. Sci., Part A: Polym. Chem., 1993, 31, no. 3: 797–804. https://doi.org/10.1002/pola.1993.080310326
  15. Zou Y., Yang J., Zhan Y., Yang X., Zhong J., Zhao R., Liu X. Effect of curing behaviors on the properties of poly(arylene ether nitrile) end-capped with phthalonitrile. J. Appl. Polym. Sci., 2012, 125, no. 5: 3829–3835. https://doi.org/ 10.1002/app. 36691
  16. Wu Z., Han J., Li N., Weng Z., Wang J., Jian X. Improving the curing process and thermal stability of phthalonitrile resin via novel mixed curing agents. Polym. Int., 2017, 66, no. 6: 876–881. https://doi.org/10.1002/pi.5328
  17. Ji S., Yuan P., Hu J., Sun R., Zeng K., Yang J. A novel curing agent for phthalonitrile monomers: curing behaviors and properties of the polymer network. Polymer. 2016, 84: 365–370. https://doi.org/10.1016/j.polymer.2016.01.006
  18. Sheng H., Peng X., Guo H., Yu X., Tang C., Qu X., Zhang Q. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer. Mater. Chem. Phys., 2013, 142, no. 2–3: 740–747. https://doi.org/10.1016/ j.matchemphys. 2013.08. 033
  19. Bershtein V.A., Fainleib A.M., Yakushev P.N., Kirilenko, D. A.; Melnychuk, O. G. Super-heat-resistant polymer nanocomposites on the base of heterocyclic networks: structure and properties. Physics of Solid State, 2019, 61, no. 8: 1494–1501. https://doi.org/10.1134/S1063783419080080
  20. Laskoski M., Neal A., Keller T.M., Dominguez D., Klug C.A., Saab A.P. Improved Synthesis of Oligomeric Phthalonitriles and Studies Designed for Low Temperature Cure. J. Polym. Sci., Part A: Polym. Chem., 2014, 52, no. 12: 1162–1168. https://doi. org/10.1002/pola.27161
  21. Keller T.M., Price T.R. Amine-cured bisphenol-linked phthalonitrile resins. J. Macromol Sci. Chem., 1982, 18, no.6: 931–937. https://doi.org/10.1080/00222 338208077208
  22. Sumner M.J., Sankarapandian M., McGrath J.E., Riffle J.S., Sorathia U. Flame retardant novolac–bisphthalonitrile structural thermosets. Polymer, 2002, 43, no. 19: 5069–5076. https://doi.org/10.1016/S0032-3861(02)00354-3
  23. Augustine D., Mathew D., Reghunadhan Nair C.P. End-functionalized thermoplastic-toughened phthalonitrile composites: influence on cure reaction and mechanical and thermal properties. Polym. Int., 2014, 64, no. 1: 146–153. https://doi.org/10.1002/ pi.4774
  24. Augustine D., Mathew D., Reghunadhan Nair C.P. Phenol-containing phthalonitrile polymers – synthesis, cure characteristics and laminate properties. Polym. Int., 2013, 62, no. 7: 1068–1076. https://doi.org/10.1002/pi.4393
  25. Pat. 5202414 USA, IC6 C08G 73/00. Pyrolzed amine cured polymer of dithioether-linked phthalonitrile monomer. T.M. Keller, T.R. Price. Publ. 13.04.1993.
  26. Keller T.M. Strong organic acid cured phthalonitrile resins for high temperature applications. Polym. Prepr. (USA), 1992, 33, no. 1: 422–423.
  27. Burchill P.J. On the formation and propertie of a high-temperature resin from a bisphthalonitrile. J. Polym. Sci. Part A: Polym. Chem., 1994, 32, no. 1: 1–8. https://doi. org/ 10.1002/pola.1994.080320101
  28. Woehrle D., Schulte B. Polymeric phthalocyanines and their precursors, 15. Syntheses of alkylenedioxy bridged polymeric phthalocyanines and their absorption capacities for organic solvents in comparison to other phthalocyanines. Makromol. Chem., 1994, 189, no. 6: 1229–1238. https://doi.org/10.1080/15685551.2013.840500
  29. Zhou S.,Hong H., Zeng K., Miao P., Zhou H., Wang Y.,Liu T., Zhao C., Xu G., Yang G. Synthesis, characterization and self-promoted cure behaviors of a new phthalonitrile derivative 4-(4-(3, 5-diaminobenzoyl) phenoxy) phthalonitrile. Polym. Bull., 2009, 62, no. 5: 581–591.
  30. Gujadhur R.K., Venkataraman D. Synthesis of diaryl ethers using an easy-to-prepare, air-stable, soluble copper (I) catalyst. Synth. Commun., 2001, 31, no. 18: 2865–2879. https://doi.org/10.1081/SCC-100105338
  31. Keller T.M., Price T.R., Griffith J.R. Polymerization studies on aromatic bis (phthalonitrile) monomers. J. Am. Chem. Soc. Div. Org. Coat. Plast. Chem. Prepr., 1980, 43: 804–807.
  32. Sastri S.B., Keller T.M. Phthalonitrile cure reaction with aromatic diamines. J. Polym. Sci. Part A: Polym. Chem., 1998, 36, no. 11: 1885–1890. https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1885::AID-POLA23> 3.0. CO;2-9
  33. Pat. 6001926 USA, IC6 C08G 73/00. Fiber-reinforced phthalonitrile composite cured with low-reactivity aromatic amine curing agent. B. Sastri, T.M. Keller. Publ. 14.12.1999.
  34. Dominguez D.D., Jones H.N., Keller T.M. The effect of curing additive on the mechanical properties of phthalonitrile-carbon fiber composites. Polym. Compos., 2004, 25, no. 5: 554–561. https://doi.org/10.1002/pc.20049
  35. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile‐carbon fiber composites. Polym. Comp., 1996, 17, no. 6: 816–822. https://doi.org/10.1002/pc.10674
  36. Pat. 4408035 USA, IC3 C08G 83/00. Phthalonitrile resin from diphthalonitrile monomer and amine. T.M. Keller. Publ. 04.10.1983
  37. Pat. 5389441 USA, IC6 B32B 27/34. Phthalonitrile prepolymer as high temperature sizing material for composite fibers. T.M. Keller. Publ. 14.02.1995.
  38. Pat. 5925475 USA, IC6 C08G 73/06. Phthalonitrile thermoset polymers and composites cured with halogen-containing aromatic amine curing agents. S.B. Sastri, T.M. Keller. Publ. 20.07.1999.
  39. Pat. 2201423 RU, IC7 C08G 73/06. Polimernoe svyazuyushchee I vysokoprochnye termostoykie kompozicionnye materialy na ego ocnove. S.S. Gluhova, G.M. Gunyaev, I.F. Davydova, V.T. Minakov, E.N. Kablov, N.S. Kavun, T.V. Panina, I.I. Ponomarev, A.E. Raskutin, A.F. Rumyantsev, V.I. Sidorenko. Publ. 27.03.2003.
  40. Pat. 2225417 RU, IC7 C08G 73/06. Heterotsiklicheskiy termoreaktivnyy polimer. V.I. Sidorenko, T.V. Panina, I.I. Ponomarev. Publ. 10.03.2004.
  41. Pat. 2354666 RU, IC7 C08G 73/06. Sposob polucheniya termostoykih heterotsiklicheskih polimerov. L.V. Chursova, E.N. Kablov, Muhametov R.R., Ahmadieva K.R., V.T. Minakov. Publ. 10.05.2009.
  42. Warzel M.L., Keller T.M. Tensile and fracture properties of a phthalonitrile polymer. Polymer, 1993, 34, no. 3: 663–666. https://doi.org/10.1016/0032-3861(93)90570-Z
  43. Sastri S.B., Keller T.M. Phthalonitrile cure reaction with aromatic diamines. J. Am. Chem. Soc. Polym. Prepr., 1998, 39: 420–421.
  44. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile–glass fabric composites. Polym. Compos., 1997, 18, no. 1: 48–54. https://doi.org/10.1002/pc.10260
  45. Sastri S.B., Armistead J.P., Keller T.M. Phthalonitrile-Carbon Fiber Composites. 40-th Int. SAMPE Proceeding., 1995, 40: 307–315.
  46. Chen Z., Guo H., Yang J., Zhao R., Liu X. Manufacturing and thermal and mechanical properties of advanced 3-aminophenoxyphthalonitrile/bisphthalo-nitrile composite laminates. High Perform. Polym., 2012, 25, no. 2: 214–224. https://doi.org/10.1177/ 0954008312460411
  47. Chen Z., Guo H., Tang H., Yang X., Xu M., Liu X. Preparation and properties of bisphenol A-based bisphthalonitrile composite laminates. J. Appl. Polym. Sci., 2013, 129, no. 5: 2621–2628. https://doi.org/10.1002/app.38986
  48. Sastri S.B., Armistead J.P., Keller T.M. Flame resistant phthalonitrile composites. International Aircraft Fire and Cabin Safety Research Conference, November, 16-20, 1998, Atlantic City, NY,. Proceeding.
  49. Pat. 7642336 B2 USA, IC7 C08G 063/44. Phthalonitrile composites. G.E. Fowler, E.J. Adair, M.M. Liggett, D. Zhang, F.W. Harris, R.A.Gray. Publ. 05.01.2010.
  50. Patent 7681834 B2 USA, IC7 B64C 1/00. Composite missile nose cone. A.B. Facciano, R.T. Moore, G.J. Hlavacek, C.D. Seasly. Publ. 23.03.2010.
  51. McConnell V.P. Resins for the Hot Zone, Part II: BMIs, CEs, benzoxazines and phthalonitriles. High-Performance Composites, 2009, September issue: 49-54.
  52. Black S. Are high-temp thermosets ready to go commercial? High-Performance Composites, 2004, December issue: 24–29.
  53. Derradji M., Ramdani N., Zhang T., Wang J., Feng T., Wang H., Liu W. Mechanical and thermal properties of phthalonitrile resin reinforced with silicon carbide particles. Mater. Des., 2015, 71: 48–55. https://doi.org/10.1016/j.matdes. 2015.02.001
  54. Lei Y., Hu G., Zhao R., Guo H., Zhao X., Liu X. Preparation process and properties of exfoliated graphite nanoplatelets filled Bisphthalonitrile nanocomposites. J. Phys. Chem. Solid, 2012, 73, no. 11: 1335–1341. https://doi.org/10.1016/j.jpcs.2012.07.003
  55. Lei Y., Zhao R., Liu X. Mechanical and thermal properties of graphite nanoplatelets reinforced polyarylene ether nitriles/bisphthalonitrile IPN system. J. Appl. Polym. Sci., 2013,127, no. 5: 3595–3600. https://doi.org/10.1002/app.37754
  56. Derradji M., Ramdani N., Zhang T., Wang J., Lin Z., Yang M., Xu X., Liu W. High thermal and thermomechanical properties obtained by reinforcing a bisphenol-A based phthalonitrile resin with silicon nitride nanoparticles. Mater. Lett., 2015, 149, C: 81–84. https://doi.org/10.1016/j.matlet.2015.02.122
  57. Derradji M., Wang J., Liu W.B. High performance ceramic-based phthalonitrile micro- and nanocomposites. Mater. Lett., 2016, 182, C: 380–385. https://doi.org/ 10.1016/j.matlet.2016.06.110
  58. Derradji M., Ramdani N., Gong L.-D., Wang J., Xu X., Lin Z., Henniche A., Liu W. Mechanical, thermal, and UV-shielding behavior of silane surface modified ZnO-reinforced phthalonitrile nanocomposites. Polym. Adv. Technol., 2016, 27, no. 7: 882–888. https://doi.org/10.1002/pat.3744
  59. Derradji M., Ramdani N., Zhang T., Wang J., Gong L.-D., Xu X., Lin Z., Henniche A., Rahoma H.K.S., Liu W. Effect of silane surface modified titania nanoparticles on the thermal, mechanical, and corrosion protective properties of a bisphenol-A based phthalonitrile resin. Progr.Org. Coatings, 2016, 90: 34–43. https://doi.org/ 10.1016/ j.porgcoat.2015.09.021
  60. Li X., Yu B., Zhang D., Lei J., Nan Z. Cure behavior and thermomechanical properties of phthalonitrile–polyhedral oligomeric silsesquioxane copolymers. Polymers, 2017, 9, no. 334: 1–13. https://doi.org/10.3390/polym9080334
  61. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Gusakova K., Markina D., Melnychuk O., Ryzhov V. High temperature phthalonitrile nanocomposites with silicon-based nanoparticles of different nature and surface modification: structure, dynamics, properties. Polymer, 2019, 165: 39–54. https://doi.org/10.1016/j.polymer. 2019.01.020
  62. Bershtein V., Fainleib A., Yakushev P., Kirilenko D., Gusakova K., Markina D., Melnychuk O., Ryzhov V. High-temperature hybrid phthalonitrile / amino-MMT nanocomposites: synthesis, structure, properties. eXPRESS Poly. Let., 2019, 13, no. 7: 656–672. https://doi.org/10.3144/expresspolymlett.2019.55
  63. Derradji М., Song Х., Dayo А.Q., Wang J., Liu W. Highly filled boron nitride-phthalonitrile nanocomposites for exigent thermally conductive application. Appl. Therm. Eng., 2017, 115: 630–636. http://dx.doi.org/10.1016/j.applthermaleng.2016. 12.141