2020 (2) 2

https://doi.org/10.15407/polymerj.42.02.085

Nanocomposites based on Polyurethane matrix and 1,2-propanediolisobutyl-POSS: structure and morphological peculiarities

L.V. Karabanova,

Institute of Macromolecular Chemistry of NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine, e-mail: lyudmyla_karaban@ukr.net

ORCID: 0000-0002-5909-0042

L.A. Honcharova,

Institute of Macromolecular Chemistry of NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine, e-mail: glove@meta.ua

V.I. Shtompel, Institute of Macromolecular Chemistry of NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine, e-mail: vishtomp@bigmir.net

ORCID: 0000-0001-5055-1917

Polym. J., 2020, 42, no. 2: 85-95.

Section: Structure and properties.

 

Language: Ukrainian.

Abstract:

Nanocomposites based on Polyurethane (PU) network and 1,2-propanediolisobutyl-POSS used as functionilized nanofiller, were prepared and investigated. PU network was synthesized by two step method. In the first stage the adduct of trimethylolpropane with toluene 2,4-diisocyanate (the adduct TMP-TDI) was obtained. In the second stage three-dimensional PU was synthesized from a mixture of Laprol 5003 and adduct TMP/TDI (ratio 1:2 g-eq.) at 80 °C in nitrogen atmosphere. 1,2-propanediolisobutyl-POSS nanoparticles were incorporated into PU matrix during the second stage of PU synthesis. The structure peculiarities and the morphology of the nanocomposites have been investigated. Overall, it was found that 1,2-propanediolisobutyl-POSS nanoparticles are capable to be incorporated into PU polymer chain by chemical reaction between hydroxyl groups of 1,2-propanediolisobutyl-POSS and isocyanate groups of PU. The incorporation of the 1,2-propanediolisobutyl-POSS nanoparticles into PU matrix leads to the formation of more ordered structure.

Investigation of the nanocomposite’s structure by WAXS/SAXS methods have shown that nanofiller 1,2-propanediolisobutyl-POSS slightly affects the amorphous structure of PU and to a greater extent the nanofiller affects the microphase structure of PU. By SAXS method the one distinct interference maximum for the native PU matrix was detected that signify the existence of periodicity in the disposition of the rigid and soft domains of molecular chain. Incorporation of 1,2-propanediolisobutyl-POSS into PU matrix results in the gradual decreasing of the Bragg’s period of the alternation of the rigid and soft domains  of PU matrix with the increase of the 1,2-propanediolisobutyl-POSS content in the volume of PU. By Ruland method such structure parameter as range of heterogeneity lp was calculated and the extreme dependence of the effective size of the rigid and soft domains on the content of 1,2-propanediolisobutyl-POSS was found. The extreme dependence of interference peak’s intensity from the 1,2-propanediolisobutyl-POSS content  with maximum at 5 wt % of nanofiller  was also detected. The subsequent decreasing of interference peak’s intensity with increasing of 1,2-propanediolisobutyl-POSS content up to 10 wt % indicated that certain part of 1,2-propanediolisobutyl-POSS plays the role of the nanofiller in the system. The investigations which carried out allowed to conclude that 1,2-propanediolisobutyl-POSS which have two hydroxyl groups in the organic frame is chemically incorporated into the polymer chain between cross-links of PU network, but with the increase of 1,2-propanediolisobutyl-POSS content up to 10 wt. %, the certain part of the 1,2-propanediolisobutyl-POSS is not incorporated into the polymer chain, but plays the role of a nanofiller in the system.

By SEM it was shown that PU matrix have the homogeneous on this level morphology, the incorporation of 1,2-propanediolisobutyl-POSS  lead to the formation of segregated structure. 1,2-propanediolisobutyl-POSS  introduced into PU matrix acts as nanostructuring agent. As a result the nanocomposites with more ordered structure are formed in compare with native PU. This allowed to get materials with improved thermal stability.

 

Keywords: nanocomposites, polyurethane, 1,2-propanediolisobutyl-POSS, structure, morphology.

 

 

References

  1. Chattopadhyay D.K., Webster D.C. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci., 2009, 34: 1068–1133. https://doi.org/10.1016/j.progpolymsci.2009.06.002.
  2. Madbouly S.A., Otaigbe J.U. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog. Polym. Sci., 2009, 34: 1283–1332. https://doi.org/10.1016/j.progpolymsci.2009.08.002.
  3. Marzec M., Kucińska-Lipka J., Kalaszczyńska I., Janik H. Development of polyurethanes for bone repair. Materials Science and Engineering: C. 2017, 80: 736–747. https://doi.org/10.1016/j.msec.2017.07.047.
  4. Lloyd A.W., Faragher R.G., Denyer S.P. Ocular biomaterials and implants. Biomaterials, 2001, 22: 769–785. https://doi.org/10.1016/S0142-9612(00)00237-4.
  5. Karabanova L.V., Lloyd A.W., Mikhalovsky S.V., Helias M., Philips G.J., Rose S.F., Mikhalovska L., Boiteux G., Sergeeva L.M., Lutsyk E.D., Svyatyna A. Polyurethane/Poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications. J. Mater. Sci. Matter. Med., 2006, 17: 1283–1296. https://doi.org/10.1007/s10856-006-0603-y.
  6. Bershtein V.A., Gun`ko V.M., Karabanova L.V., Sukhanova T.E., Yakushev P.N., Egorova L.M., Turova A.A., Zarko V.I., Pakhlov E.M., Vylegzhanina M.E., Mikhalovsky S.V. Polyurethane-poly(2-hydroxyethyl methacrylate) semi-IPN-nanooxide composites. RSC Adv., 2013, 3: 14560–14570. https://doi.org/10.1039/c3ra40295a.
  7. Blanko I. Decomposition and ageing of hybrid materials with POSS. In: Polymer/POSS nanocomposites and hybrid materials. Preparation, properties, applications, Kalia S., Pielichowski K. (eds), Switzerland: Springer, 2018: 415–462. https://doi.org/10.1007/978-3-030-02327-0_13.
  8. Hebda E., Pielichowski K. Polyurethane/POSS Hybrid Materials. In: Polymer/POSS Nanocomposites and Hybrid materials: Preparation, Properties, Applications, Kalia S, Pielichowski K (eds), Switzerland: Springer, 2018: 167–204. https://doi.org/10.1007/978-3-030-02327-0_5.
  9. Karabanova L.V., Bershtein V.A., Sukhanova T.E., Yakushev P.N., Egorova L.M., Lutsyk E.D., Svyatyna A.V., Vylegzhanina M.E. 3D diamond-containing nanocomposites based on hybrid polyurethane–poly(2-hydroxyethyl methacrylate) semi-IPNs: Composition-nanostructure-segmental dynamics-elastic properties relationships. J. Pol. Sci. B, 2008, 46: 1696–1712. https://doi.org/10.1002/polb.21506.
  10. Karabanova L.V., Whitby R.L.D., Bershtein V.A., Korobeinyk A.V., Yakushev P.N., Bondaruk O.M., Lloyd A.W., Mikhalovsky S.V. The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multi-walled carbon nanotube composites with low filler content. Colloid Polym. Sci., 2013, 291: 573–583. https://doi.org/10.1007/s00396-012-2745-4.
  11. Karabanova L.V., Whitby R.L.D., Korobeinyk A., Bondaruk O., Salvage J.P., Lloyd A.W., Mikhalovsky S.V. Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Comp. Sci. Tech., 2012, 72: 865–872. https://doi.org/10.1016/j.compscitech.2012.02.008.
  12. Gnanasekaran D., Madhavan K., Reddy B.S.R. Developments of polyhedral oligomeric silsesquioxanes (PОSS), pоss-nanocomposites and their applications: A review. J. Sci. Ind. Res., 2009, 68: 437–464. http://nopr.niscair.res.in/handle/123456789/4321.
  13. Gumenna M.A., Shevchuk A.V., Klimenko N.S., Shevchenko V.V. Polyurethanes on the base of polyhedral oligosilsesquioxanes (POSS). Polym. J. (Ukr.), 2007, 29: 177–185.
  14. Zhou H., Chua M.H., Xu J. Functionalized POSS-based hybrid composites. In: Polymer composites with functionalized nanoparticles. Synthesis, properties, and applications. Pielichowski K., Majka T.M. (eds), Elsevier, 2019: 179–210. https://doi.org/10.1016/B978-0-12-814064-2.00006-8.
  15. Gomza Y.P., Bliznyuk V.N., Gumenna M.A., Shevchuk A.V., Klymenko N.S., Shevchenko V.V. Sintez i struktura segmentirovannykh poliefiruretanov na osnove smesi poliedral’nykh oligosilseskvioksanov. Reports of the National Academy of Sciences of Ukraine (Rus.), 2008, 10: 142–147. ISSN 1025-6415. http://nbuv.gov.ua/UJRN/dnanu_2008_10_28.
  16. Kuo S.W., Chang F.C. POSS related polymer nanocomposites. Prog. Polym. Sci., 2011, 36: 1649–1696. https://doi.org/10.1016/j.progpolymsci.2011.05.002.
  17. Gomza Y.P., Fomenko A.A., Nesin S.D., Gumenna M.A., Klymenko N.S., Shevchenko V.V., Klepko V.V. Osobennosti formirovaniya struktury organo-neorganicheskikh nanokompozitov na osnove silseskvioksansoderzhashchikh poliefiramidouretanov. Nanosystems, Nanomaterials, Nanotechnologies (Rus.), 2008, 6 (3): 965–976. http://dspace.nbuv.gov.ua/handle/123456789/76184.
  18. Janowski B., Pielichowski K. Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim. Acta, 2008, 478: 51–53. https://doi.org/10.1016/j.tca.2008.08.015.
  19. Bourbigot S., Turf T., Bellayer S., Duquesne S. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym. Degrad. Stab., 2009, 94: 1230–1237. https://doi.org/10.1016/j.polymdegradstab.2009.04.016.
  20. Bourbigot S., Duquesne S., Fontaine G., Bellayer S., Turf T., Samyn F. Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol. Cryst. Liq. Cryst., 2008, 486 (1): 325/[1367]–339/[1381]. https://doi.org/10.1080/15421400801921983.
  21. Fomenko A.A., Gomza Yu.P., Klepko V.V., Gumenna M.A., Klimenko N.S., Shevchenko V.V. Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym. J. (Ukr.), 2009, 31 (2): 137–143.
  22. Hebda E., Ozimek J., Raftopoulos K.N., Michałowski S., Pielichowski J., Jancia M., Pielichowski K. Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym. Adv. Technol., 2015, 26 (8): 932–940. https://doi.org/10.1002/pat.3504.
  23. Fu B.X., Hsiao B.S., White H., Rafailovich M., Mather P.T., Jeon H.G., Phillips S., Lichtenhan J., Schwab J. Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym. Int., 2000, 49: 437–440. https://doi.org/10.1002/(sici)1097-0126(200005)49:5<437::aid-pi239>3.0.co;2-1.
  24. Oaten M., Choudhury N. R. Silsesquioxane−urethane hybrid for thin film applications. Macromolecules. 2005, 38(15): 6392–6401. http://dx.doi.org/10.1021/ma0476543.
  25. Zhang W., Camino G., Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: An overview of fire retardance. Prog. Polym. Sci., 2017, 67: 77–125. http://dx.doi.org/10.1016/j.progpolymsci.2016.09.011.
  26. Kazemi F., Mir Mohamad Sadeghi G., Kazemi H.R. Synthesis and evaluation of the effect of structural parameters on recovery rate of shape memory polyurethane-POSS nanocomposites. Eur. Polym. J., 2019, 114: 446–451. https://doi.org//10.1016//j.eurpolymj.2018.12.041.
  27. Joshi M., Adak B., Butola B.S. Polyurethane nanocomposite based gas barrier films, membranes and coatings: A review on synthesis, characterization and potential applications. Prog. Mat. Sci., 2018, 97: 230–282. https://doi.org/10.1016/ j.pmatsci.2018.05.001.
  28. Madhavan K., Reddy B.S.R. Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J. Mem. Sci., 2009, 342: 291–299. https://doi.org/10.1016/j.memsci.2009.07.002.
  29. Gnanasekaran D., Walter P.A., Parveen A.A., Reddy B.S.R. Polyhedral oligomeric silsesquioxane-based fluoroimide-containing poly(urethane-imide) hybrid membranes: synthesis, characterization and gas-transport properties. Sep. Pur. Tech., 2013, 111: 108–118. https://doi.org/10.1016/j.seppur.2013.03.035.
  30. Lai Y.S., Tsai C.W., Yanga H.W., Wang G.P., Wu K.H. Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings onaluminum alloys. Mater. Chem. Phys., 2009, 117(1): 91–98. https://doi.org/10.1016/j.matchemphys.2009.05.006.
  31. Wang X., Hu Y., Song L., Xing W., Lu H., Lv P., Jie G. UV-curable waterborne polyurethane acrylate modified with octavinyl POSS for weatherable coating applications. J. Polym. Res., 2011, 18(4): 721–729. https://doi.org/10.1007/s10965-010-9468-3.
  32. Karabanova L.V., Boiteux G., Gain O., Seytre G., Sergeeva L.M., Lutsyk E.D. Miscibility and thermal and dynamic mechanical behaviour of semi-interpenetrating polymer networks based on polyurethane and poly(hydroxyethyl methacrylate). Polym. Int., 2004, 53: 2051–2058. https://doi.org/10.1002/pi.1627.
  33. Kratky O., Leopold H. Messung und unterdruckung der blendenstreuung am kolimation system fur rontgenkleinwinkeluntersuchungen. Die Macromol. Chemie, 1964, 75 (1): 69–74.
  34. Schmidt P.W., Hight R.J. Slit height corrections in small angle X-ray scattering. Acta Cryst., 1960, 13: 480–483. https://doi.org/10.1107/S0365110X60001138.
  35. Guinier A. Rentgenografiya kristallov. Teoriya i praktika (Rus.). M.: Fizmatgiz, 1961: 604.
  36. Ruland W. Small-angle scattering of two-phase systems: determination and significance of systematic deviations from Porod’s law. J. Appl. Cryst., 1971, 4 (1): 70–73. https://doi.org/10.1107/S0021889871006265.
  37. Perret R., Ruland W. Eine verbesserte Auswertungsmethode für die Rönt- genkleinewinkelstreuung von Hochpolymeren. Kolloid-Z. u. Z. Polymere, 1971, 247 (1-2): 835–843. https://doi.org/10.1007/BF01500257.
  38. Karabanova L.V., Honcharova L.А., Sapsay V.I., Klymchuk D.O. Synthesis, morphology and thermal properties of the POSS-containing polyurethane nanocomposites. Chem. Phys. Tech. Surf., 2016, 7 (4): 413–420. https://doi.org/10.15407/hftp07.04.413.