2020 (3) 1
https://doi.org/10.15407/polymerj.42.03.151
COMPLEX FORMATION IN THE POLYMERIZATION SYSTEMS WITH HYDROGEN PEROXIDE AS AN INITIATOR
V.P. Boiko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosе, Kyiv, 02160, Ukraine
E-mail: boikovital41@i.ua
ORCID: 0000-0002-0157-6664
V.K. Grishchenko
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shosе, Kyiv, 02160, Ukraine
E-mail: oligomer8@gmail.com
ORCID: 0000-0002-4951-936X
Polym. J., 2020, 42, no. 3: 151-171.
Section: Review.
Language: Russian.
Abstract:
Consideration of the complexation of components in the polymerization systems becomes an important step in the study of the mechanisms of all stages of the polymerization process. An important role in this process is played by the solvent, which modifies the intermolecular interactions (IMI) between a monomer and an initiator or with both components, leading to unexpected effects that affect both the kinetics of polymerization and the properties of the final products. These effects are especially strong in systems whose components are prone to active IMI. Such systems include mixtures in which hydrogen peroxide (HP) is used as an initiator, capable of acting as an active donor and acceptor of protons in a hydrogen bond. In the preparation of oligodienes with terminal hydroxyl groups, the diene-HP-alcohol system is used. HP molecule forms a π-complex with diene’s double bonds as a hydrogen donor and a hydrogen bond with a solvent, where the peroxide group of HP is solvated by alcohol. The resulting triple complex decomposes into water and two radicals – alcohol hydroxyl-containing and hydroxyl ones, which initiate the polymerization of diene. When using isopropyl alcohol, the alcohol‘s radical contains a tertiary hydroxyl group. This leads to the formation in this alcohol of an oligomer with an effective functionality of 1.5 instead of the expected 2, since the tertiary hydroxyl group is inactive in the urethane formation reaction. It is shown that in this process, the termination of macroradicals occurs by the chain transfer to HP, not by recombination of macroradicals. The new polymerization scheme in the studied system is proposed, taking into account the experimental facts presented. The scheme is confirmed by thermochemical and quantum-chemical calculations and the distribution of oligomer molecules by functionality.
Key words: complex formation, hydrogen peroxide, initiation, termination, functionality.
REFERENCES
1. Moad G., Solomon D.H. The Chemistry of Radical Polymerization. Elsevier. 2006: 639. https://doi.org/10.1016/B978-008044288-4/50028-5.
2. Kabanov V.A., Zubov V.P., Semchikov Yu.D. Kompleksno-radikal’naya polimerizaciya. M., Himiya, 1987: 254.
3. Tom F. A. De Greef, Maarten M. J. Smulders, Martin Wolffs, Albert P. H. J. Schenning, Rint P. Sijbesma, and E. W. Meijer. Supramolecular Polymerization. Chem. Rev. 2009. 109, no. 11: 5687–5754. https://doi.org/10.1021/cr900181u.
4. Korolev G.V., Il’in A.A., Mogilevich M.M., Grachev V.P., Perepelicicina E.O., Evplonova E.S. Anomal’noe vliyanie malyh drbavok somonomerov na glubokie stadii polimerizacii vysshih alkil(met)akrilatov. Vysokomolek. soedin. Ser. A. 2003. 45, no. 6: 883–890.
5. Korolev G.V., Perepelicina E.O. Kineticheskie anomalii v radikal’noi polimerizacii alkil(met)akrilatov i ih kolichestvennaya interpretaciya v ramkah modeli associatov-«zagotovok». Vysokomolek. soedin. Ser. A. 2001. 43, no. 6: 774–783.
6. Tarasov D.N., Tiger R.P., Entelis S.G., Gorshkov A.V., Levina M.A. Molekulyarnaya organizaciya reagentov v kinetike i katalize jidkofaznyh reakcii. VIII. Novyi podhod k uchetu vliyaniya prirody rastvoritelya na kinetiku reakcii v associirovannyh sredah. Kinetika i kataliz. 1999. 40, no. 1: 32–37.
7. Chirkov Yu.N., Tiger R.P., Entelis S.G., Tondor J.-J. Molekulyarnaya organizaciya reagentov v kinetike i katalize jidkofaznyh reakcii. VI. Osobennosti temperaturnyh zavisimostei konstant skorosti kataliticheskih reakcii uretanoobrazovaniya. Kinetika i kataliz. 1995. 36, no. 5: 670–673.
8. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Weinheim: Wiley-VCH., 2011: 692. https://doi.org/10.1002/9783527632220.
9. Entelis S.G., Tiger R.P. Kinetika reakcii v jidkoi faze. Kolichestvennyi uchet vliyaniya sredy. M., Himiya, 1973: 416.
10. Amis E. Vliyanie rastvoritelya na skorost’ na skorost’ i mehanizm himicheskih reakcii. M., Mir, 1968: 328.
11. Tager A. A. Fiziko-himiya polimerov, 3 izd. M., Himiya, 1978: 544.
12. Lemenovskii D.A., Bagratashvili V.N. Sverkriticheskie sredy Novye khimicheskie reacii I nekhnologii. M.: Khimiya, 1999.
13. Ionic Liquids in Synthrsis / Peter Wasserschild, Thomas Welton. Wiele, 2007.
14. Mendeleev D.I. Rastvory. M., Izd-vo AN SSSR, 1959: 274.
15. Endryus L., Kifer R. Molekulyarnye kompleksy v organicheskoi himii. M., Mir, 1967: 207.
16. Korolev G.V., Mogilevich M.M., Il’in A.A. Associaciya jidkih organicheskih soedinenii. M., Mir, 2002: 264.
17. Koppel’ I.A., Payu A.I. Parametry obschei osnovnosti rastvoritelei. Reakc. sposobnost’ org. soedinenii. 1974, 11, vyp. 1 (39): 121–123.
18. Reichardt C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994. 94, no. 8: 2319–2358. https://doi.org/10.1021/cr00032a005.
19. Fialkov Yu.Ya. Rastvoritel’ kak sredstvo upravleniya himicheskim processom. L.,Himiya, 1990: 240.
20. Kreshkov A.P. Analiticheskaya himiya nevodnyh rastvorov. M., Himiya, 1982: 256.
21. Kamlet M.J., Abboud J.L.M., Taft R.W. An Examination of Linear Free Energy Relationships. Progr. Phys. Organ. Chem. 1981. 13: 485–625.
22. Koppel I.A., Palm V.A. The Influence of the Solvent on Organic Reactivity. In: Advance in Linear Free-Energy Relationships. London – New York, Plenum Press, 1972: 203–280. https://doi.org/10.1007/978-1-4615-8660-9_5.
23. Product bulletin 2002. Poly bd® resins. Hydroxyl terminated polybutadiene resins and derivatives. Cray Valley/Atofina, July 2002.
24. Pennachi V.A., Vilar V.D., Cardoso L.G. C., Mignez de Mello L.A. Liquiflex II – liquid hydroxyl terminated polybutadiene. Eur. Adhes. and Sealants. 1988. 2, Part I. no. 2: 20–21, 24; Part 2. no. 4: 14–15, 18.
25. Boiko V.P., Grischenko V.K., Makitra R.G., Midyana G.G., Pal’chikova E.Ya. Korrelyacionnaya zavisimost’ nachal’noi skorosti polimerizacii izoprena, iniciirovannoi peroksidom vodoroda, ot tipa rastvoritelya. Polіmernii jurnal. 2013. 35, no. 1: 83–87.
26. Zaikov G.E., Makitra R.G., Midyana G.G., Bazylyak L.I. Influence of the Solvents on some Radical Reactions. Science Publishers, Inc. New York, 2010: 130.
27. Makitra R.G., Turovsky A.A., Zaikov G.E. Correlation Analysis in Chemistry of Solutions. VSP, Utrecht. Boston. 2004: 320. https://doi.org/10.1201/b12185.
28. Makitra R.G., Pyrig Ya. N., Kivelyuk R.B. Vajneishie harakteristiki rastvoritelei, primenyaemye v uravneniyah LSE. Dep. VINITI no. 628–886: 33. (RJHim, 1986, 10B3299).
29. Koppel’ I.A., Pal’m V.A. Obschee uravnenie dlya ucheta sol’vatacionnyh effektov. Reakcionnaya sposobnost’ organicheskih soedinenii. 1971. 8, no. 1: 291–295.
30. Announcement – Recommendation for Reporting the Results of Correlation Analysis in Chemistry using Regression Analysis Quant. Struct. Act. Relat. 1985. 4: 29. (Ukr. perevod: Makitra R.G. Rekomendacії dlya oformlennya rezul’tatіv korrelyacіinogo analіzu hіmіchnih danih pri zastosuvannі regresіinogo analіzu. Ukr. hіm. j. 1992. 58, no. 2: 228–229).
31. Antonovskii V.L. Organicheskie peroksidnye iniciatory. M., Himiya, 1972: 445.
32. Korolev G.V., Mogilevich M.M., Il’in A.A. Associaciya jidkih organicheskih soedinenii. M., Mir, 2002: 264.
33. Kaplan I.G. Vvedenie v teoriyu mejmolekulyarnyh vzaimodeistvii. M., Nauka. Gl. red. fiz.-mat. lit-ry. 1982: 312.
34. Stid D.V., Supramolekulyarnaya himiya: v 2 t. M.: Akademkniga, 2007. 1: 479. 2: 486–895.
35. Caraculacu A.A., Agherghinei I., Baron P., Coseri S. Hydrogen bond self-association and chemical reactivity. I. Kinetic study of reactions between glycols and phenylisocyanate. Rev. Roumaine Chim. 1996. 41, no. 7–8: 539–549.
36. Caraculacu A.A., Agherghinei I., Baron P., Timpu D. Hydrogen bond self-association and chemical reactivity. II. Relation between hydrogen-bond association degree and isocyanate-alcohol reaction rate. Rev. Roumaine Chim. 1996. 41, no. 9–10: 725–731.
37. Marihin V.A., Radovanova E.I., Ivan’kova E.M., Myasnikova L.P., Volchek B.Z., Medvedeva D.A., Vlasova E.N. IK-spektry dlinnocepochechnyh alkandiolov: 1,22-dokozandiol i 1,44-tetrakontandiol. Vysokomolek. soedin. Ser. A. 2008. 50, no. 4: 625–634. https://doi.org/10.1134/S0965545X0804007X.
38. Tiger R.P. «Mercayuschie» psevdopolimernye cepi i klastery v associirovannyh rastvorah: novyi podhod k jidkofaznoi kinetike i uchetu effektov sredy. Materialy VIII Mejd. konf. «Oligomery-2002». Chernogolovka, 2002: 15.
39. Gutman V. Himiya koordinacionnyh soedinenii v nevodnyh rastvoritelyah. M., Mir, 1971: 230.
40. Gur’yanova E.N., Gol’dshtein I.P., Romm I.P. Donorno-akceptornaya svyaz’. M., Himiya, 1973: 400.
41. Hobza P., Zagradnik R. Mejmolekulyarnye kompleksy. M.: Mir, 1989: 376.
42. Hill D.J.T., O’Donnell J.J., O’Sullivan P.W. The role of donor-acceptor complexes in polymerization. Progr. Polym. Sci. 1982. 8, no. 3: 215–275. https://doi.org/10.1016/0079-6700(82)90001-6.
43. Barton J., Borsig E. Complexes in Free-Radical Polymerization. Elsevier: Amsterdam– Oxford – New York – Tokyo. 1988: 296.
44. Pliss E.M., Yablonskii O.P., Rusakov A.I., Sirik A.V. Kompleksoobrazovanie gidroperoksidov v rastvorah. M: Mir, 2008: 220.
45. Arshid F.M., Giles C.H., Jain S.K. Studies in Hydrogen-bond Formation. Part IV. The Hydrogen-bonding Properties of Water in Non-aqueous Solution of Alcohols, Ketones, Phenols, and Quinones in Aqueous and Non-aqueous Solutions. J. Chem. Soc. 1956: 559–569. https://doi.org/10.1039/jr9560000559.
46. Dega-Szafran Z., Roszak K., Katrusiak A., Komasa A., Szafran M. Three-component complex of piperidine-ethanol, p-hydroxybenzoic acid and water studied by X-ray, Raman and DFT/ Vibrational Spectroscopy. 2017. 92: 194–199. https://doi.org/10.1016/j.vibspec.2017.06.010.
47. Berlin P.A., Levina M.A., Chirkov Yu.N., Tiger R.P., Entelis S.G. Molekulyarnaya organizaciya reagentov v kinetike i katalize jidkofaznyh reakcii III. Kataliz karbonovymi kislotami reakcii obrazovaniya uretanov i mochevin. Kinetika i kataliz. 1993. 34, no. 4: 640–644.
48. Zamoiskaya L.V., Denisov V.M., Yakimanskii A.V., Zgonnik V.N., Skvorcevich E.P., Vinogradova S.I. Mehanizm reakcii vzaimodeistviya alkil’nyh i benzoatnyh radikalov s dienovymi kauchukami. Vysokomol. soedin. Ser. A. 1998. 40, no. 4: 557–564.
49. Yu Xue-Hai, Xiao Ji-Jun, Xiao He-Ming. Theoretical study on intermolecular interactions and thermodynamic properties of water – hydrogen peroxide clusters. J. Mol. Struct. (THEOCHEM). 2003. 626: 231–238.
50. Engdahl A., Nelander B., Karlstrom G. A Matrix Isolation and ab Initio Study of the Hydrogen Peroxide. J. Phys. Chem. 2001. 105, no. 37: 8393–8398. https://doi.org/10.1021/jp011082w.
51. Pettersson M., Touminen S., Rasanen M. IR Spectroscopic Study of H2O2, HDO2, and D2O2 in Ar, Kr, and Xe Matrices. J. Phys. Chem. A. 1997. 101, no. 6: 1166–1171. https://doi.org/10.1021/jp962946u.
52. Goebel J., Ault B., Del Bene J. Matrix Isolation and ab Initio Study of the Hydrogen-Bonded Complexes between H2O2 and (CH3)2O. J. Phys. Chem. A. 2000. 104, no. 10: 2033–2037. https://doi.org/10.1021/jp9941716.
53. Zhou Zheng-yu, Zhang Hai-tao, Shi Yun. Theoretical Studies of the Interaction between 1,3-Butandiol and Hydrogen Peroxide. J. Phys. Chem. A. 2004. 108, no. 31: 6520–6526. https://doi.org/10.1021/jp0310100.
54. Lundell J., Latajka Z. Density functional study of hydrogen –bonded systems II. Solvation of the H2O2 – CO complex by a nonpolar solvent. Chem. Phys. 2001. 263: 221–230. https://doi.org/10.1016/S0301-0104(00)00357-8.
55. Lundell J., Jolkkonen S., Khriashchov L., Pettersson M., Rasanen M. Matrix Isolation and Ab Initio Study of the Hydrogen-Bonded H2O –2CO Complex. Chem. Eur. J. 2001. 7, no. 8: 1670–1678. https://doi.org/10.1002/1521-3765(20010417)7:8<1670::AID-CHEM16700>3.0.CO;2-N.
56. Pehkonen S., Lundell J., Khriachtchov L., Pettersson M., Rasanen M. Matrix isolation and quantum chemical studies on the H2O2 – SO2 complex. Phys. Chem. Chem. Phys. 2004. 6, no. 19: 4607–4613. https://doi.org/10.1039/B410223A.
57. Lundell J., Pekonen S., Petterson M., Rasanen M. Interaction between hydrogen peroxide and molecular nitrogen. Chem. Phys. Lett. 1998. 286: 382–388. https://doi.org/10.1016/S0009-2614(98)00003-7.
58. Suhopar P.A., Zubko B.I. Raspad perekisi vodoroda na radikaly pod deistviem trihloruksusnoi kisloty v ciklogeksanole. Ukr. him. j. 1980. 46, no. 4: 399–402.
59. Podraza A., Lukasiewicz M., Pielichowski J. Use of a peroxide-urea complex in oxidation reactions. Czasopismo technichke. 2003. 100, no. 2: 123–133.
60. Dobado J.A., Molina J., Portal D. Theoretical Study on the Urea-Hydrogen Peroxide 1:1 Complexes. J. Phys. Chem. A. 1998. 102, no. 4: 778–784. https://doi.org/10.1021/jp972611s
61. Panarin E.F., Kalnin’sh K.K., Azanova V.V. IK-spektry i struktura kompleksov polivinilamidov s peroksidom vodoroda. Vysokomolek. soed. Ser. A. 2007. 49, no. 3: 438–446. https://doi.org/10.1134/S0965545X07030078
62. Sulimov A.V., Danov S.M., Ovcharova A.V., Flid V.R., Bruk L.G. Kineticheskaya model’ epoksidirovaniya allilovogo spirta peroksidom vodoroda na silikalite titana TS-1. Kinetika i kataliz. 2017. 88, no. 6: 688–694.
63. Wahlen J., De Vos D.E., Jacobs P.A. Activation of Hydrogen Peroxide through Hydrogen-Bonding Interaction with Acidic Alcohols: Epoxidation of Alkenes in Phenols. Org. Letters. 2003. 5, no. 1: 1777–1780. https://doi.org/10.1021/ol0344422
64. Slakman B. L., West R. H. Kinetic solvent effects in organic reactions. J. Phys. Org. Chem. 2019. 32, no. 3: no. of article 3904. https://doi.org/10.1002/poc.3904.
65. Spirin Yu.L. Reakcii polimerizacii. K., Naukova dumka, 1977: 132.
66. Korolev G.V., Berezin M.P., Grachev V.P. Novyi metod opredeleniya konversionnyh zavisimostei konstant skorosti veschestvennogo iniciirovaniya v radikal’noi polimerizacii. Vysokomolek. soed. Ser A. 2007. 49, no. 6: 1145–1152. https://doi.org/10.1134/S0965545X07060016.
67. Sivergin Yu.M., Kireeva S.M., Grishina I.N. Perekisi i gidroperekisi kak iniciatory polimerizacii monomerov. Plast. massy. 2002. no. 5: 27–33.
68. Grant R.D. Solvent Effect on the Reaction of t-Butoxy Radicals with Methyl Metacrylate. Austr. J. Chem. 1983. 36, no. 12: 2447–2454. https://doi.org/10.1071/CH9832447.
69. Vorob’eva A.I., Sagitova D.R., Kuznecov S.I., Kunakova R.V., Monakov Yu.B. Vliyanie prirody rastvoritelya na radikal’nuyu sopolimerizaciyu N,N-diallil-N,N-dimetilammonii hlorida i maleinovoi kisloty. Vysokomolekul. soedin. Ser. A. 2008. 50, no. 2: 230–236.
70. Farina M. Chemistry and kinetics of the chain transfer reaction. Makromol. Chem., Makromol. Symp. 1987. 10–11: 255–272. https://doi.org/10.1002/masy.19870100114.
71. Entelis S.G., Evreinov V.V., Kuzaev A.I. Reakcionnosposobnye oligomery. M ., Himiya, 1985: 43.
72. Curteanu S. A comparative description of diffusion-controlled reaction models in free radical polymerization. Rev. Roumaine Chim. 2003. 48, no. 4: 245–262.
73. Coote M.L., Davis T.P. The mechanism of the propagation step in free-radical copolymerization. Progr. Polym. Sci. 1999. 24, no. 9: 1217–1251. https://doi.org/10.1016/S0079-6700(99)00030-1.
74. Kirsh Yu.E. N-vinilamidy: sintez, fiziko-himicheskie svoistva i osobennosti radikal’noi polimerizacii . Vysokomolekul. soedinen. 1993. 35, no. 2: 98–114.
75. Smith G.B., Russell G.T., Heuts P.A. Termination in Dilute-Solution Free-Radical Polymerization: A Comparative Model. Macromol. Theory Simul. 2003. 12, no. 5: 299–314. https://doi.org/10.1002/mats.200390029.
76. Gromov V.F., Bune E.V., Teleshov E.N. Osobennosti radikal’noi polimerizacii vodorastvorimyh monomerov. Usp. himii. 1994. 63, no. 6: 530–542. https://doi.org/10.1070/RC1994v063n06ABEH000101.
77. Patent 3673168 SShA. Polymerization process / O.W. Burke, Jr,. A.A. Kizer, P. Davis – MKI S08d. Zayavl. 22.01.70, no. 4812. Opubl. 27.06.72.
78. Get’manchuk Yu.P., Bratychak M.M. Hіmіya visokomolekulyarnih spoluk. L’vіv: Vidavnictvo NU “L’vіvs’ka polіtehnіka”, 2008: 460.
79. Berkowitz J., Ellison G.B., Gutman D. Three Methods To Measure Bond Energies. J. Phys. Chem. 1994. 98, no. 11: 2744–2765. https://doi.org/10.1021/j100062a009.
80. Giguere P.A., Liu I.D. Kinetics of the thermal decomposition of hydrogen peroxide vapor. Canad. J. Chem. 1957. 35, no. 4: 283–293. https://doi.org/10.1139/v57-042.
81. Walling Ch. Free Radicals in Solution. London, John Wiley & Sons. 1957: 631.
82. Grischenko V.K., Spirin Yu.L. Oligomerizaciya izoprena v organicheskih rastvoritelyah, iniciirovannaya perekis’yu vodoroda i gidroperekis’yu kumola. Vysokomolek. soedin. Ser. A. 1969. 11, no. 5: 980–988.
83. Spirin Yu.L. Reakcionnaya sposobnost’ radikalov i molekul v radikal’nyh reakciyah. Usp. himii. 1969. 38, no. 7: 1201–1222. https://doi.org/10.1070/RC1969v038n07ABEH001759.
84. Kapkowski M., Niemczyk-Wojdyla A., Bartczak P., Pyrkosz-Bulska M., Gajcy K., Sitko R., Zubko M., Szade J., Klimontko J., Balin K., Polanski J. A Study of Catalytic Oxidation of a Library of C2 to C4 Alcohols in the Presence of Nanogold. Nanomaterials. 2019. 9: 441–458. https://doi.org/10.3390/nano9030442
85. Schirmann J.P., Delavarenne S.Y. Hydrogen Peroxide in Organic Chemistry. Produits Chimique Ugine Kuhlmann, 1984: 208.
86. Burghardt A., Kulicki Z., Maronski T. Badania nad utlenianiem alkoholu isopropilowego w fazie cieclej do nadtlenku wodoru I acetonu. I. Wplyw zasadniczich parametrow na przebieg procesu Chem. Stosow. 1966. 10A, no. 2: 229–251; Burghardt A., Kulicki Z., Maronski T. Badania nad utlenianiem alkoholu isopropilowego w fazie cieclej do nadtlenku wodoru I acetonu. II. Znaczenie reakcij miedzy nadtlenkiem wodoru I alkoholem isopropilowym w procesie utleniania. Chem. Stosow. 1966. 10A, no. 2: 253–260.
87. Boiko V.P., Grischenko V.K. Peroksid vodoroda kak iniciator radikal’noi polimerizacii dienov. Oligomery-2017. Sb. trudov XII Mejdunarodnoi konferencii po himii i fizikohimii oligomerov. Chernogolovka, 16–21 oktyabrya 2017. 2: 32.
88. Cohen N., Benson S.W. Estimation of Heats of Formation of Organic Compounds by Additivity Methods. Chem. Rev. 1993. 93, no. 7: 2419–2438. https://doi.org/10.1021/cr00023a005.
89. Denisov E.T., Denisova L.N. Obrazovanie radikalov po reakcii gidroperekisi s dvoinoi svyaz’yu stirola. Dokl. AN SSSR. 1964. 157, no. 4: 907–909.
90. Boiko V.P. Termohimicheskii analiz reakcii peredachi pri oligomerizacii dienov v prisutstvii peroksida vodoroda. Vysokomolek. soed. Ser. A. 2005. 47, no. 12: 2081–2087.
91. Holmes J.L., Lossing F.P., Mayer P.M. Heats of Formation of Oxygen-Containing Organic Free Radicals from Appearance Energy Measurements. J. Am. Chem. Soc. 1991. 113, no. 26: 9723–9728. https://doi.org/10.1021/ja00026a002.
92. Denisov E. T., Haritonov V. V. Obrazovanie svobodnyh radikalov iz perekisi vodoroda v ciklogeksanole. Kinetika i kataliz. 1964. 5, no. 5: 781–786.
93. Dankleff M.A.P., Curci R., Edwards J.O., Pyun H.-Y. The Influence of Solvent on the Oxidation of Thioxane by Hydrogen Peroxide and by t-Butyl Hydroperoxide. J. Am. Chem. Soc. 1968. 90, no. 12: 3209–3218. https://doi.org/10.1021/ja01014a041.
94. Kalaus A.E., Time T.A., Solov’eva N.A., Bryl’ D.G., Leizerovich M.Yu. Nekotorye osobennosti sinteza oligobutadienov s koncevymi karboksil’nymi gruppami pod vliyaniem peroksidiyantarnoi kisloty. V sb.: Sintez i svoistva jidkih uglevodorodnyh kauchukov i elastomerov na ih osnove. 1979: 17–21.
95. Pham Q. T. Polybutadienes hydroxytelecheliques, 1. Microstructure, fonctionalite et mecanismes reactionnel. Etude par resonance magnetique nucleaire du proton et du carbon 13 Makromol. Chem. 1978. 179, no. 4: 1011–1023.
96. Bresler L.S., Barantsevich E.N., Polyansky V.I. Ivantchev S.S. Mechanistic Implications of the End Group Structure in Radical Telechelic Polybutadienes as Studied by NMR. Makromol. Chem. 1982. 183, no. 10: 2479–2489. https://doi.org/10.1002/macp.1982.021831018.
97. Murakami S., Fujishiro R. Thermochemical Evidence of OH- Type Intermolecular Hydrogen Bonds. Bull. Chem. Soc. Japan. 1967. 40, no. 8: 1784–1789. https://doi.org/10.1246/bcsj.40.1784.
98. Boiko V. P., Grishchenko V. K. The Influence of Solvent on the Isoprene Polymerization Initiated with Hydrogen Peroxide. Kautsch. Gummi Kunstst. 2009. 62, no. 12: 646–649.
99. Boiko V.P., D’yakova A.M. Termohimiya iniciirovaniya polimerizacii dienov pod deistviem peroksida vodoroda v rastvorah spirtov. Vopr. him. him. tehnol. 2010. no. 1: 39–46.
100. Serbinov A.I. Vliyanie vodorodnoi svyazi na termicheskoe razlojenie perekisi vodoroda Dokl. AN SSSR. 1982. 264, no. 5: 1170–1174.
101. Kharasch M.S., Nudenberg W. Detection of free radicals in solutions. III. Formation of long-chain a,ω-dicarboxylic acids. J. Org. Chem. 1954. 19, no. 12: 1921–1925. https://doi.org/10.1021/jo01377a008.
102. Denisov E.T. Okislenie i destrukciya karbocepnyh polimerov. L., Himiya, 1990: 288.
103. Solov’ev M.E., Lyubimov D.V., Boiko V.P., Grischenko V.K. Komp’yuternoe modelirovanie radikal’noi polimerizacii v sisteme butadien – peroksid vodoroda – izopropilovyi spirt. Teor. eksper. himiya. 2011. 47, no. 3: 152–155.
104. Burchill C.E., Ginns I.S. The radiation-induced oxidation of ethanol and methanol by hydrogen peroxide in aqueous solution. Canad. J. Chem. 1970. 48, no. 16: 2628–2632. https://doi.org/10.1139/v70-441.
105. Pikaev A.K. Sovremennaya radiacionnaya himiya. Tverdoe telo i polimery. Prikladnye aspekty. M.: Nauka, 1987: 448.
106. Solov’ev M.E., Boiko V.P., Grischenko V.K., Pliss E.M. Komp’yuternoe modelirovanie raspada peroksida vodoroda v komplese s dienami i izopropilovym spirtom. Neftehimiya. 2019. 59, no. 7: 806–814.
107. Denisov E.T., Denisova T.G. Bimolekulyarnye reakcii generirovaniya radikalov. Usp. himii. 2002. 71, no. 5: 477–498. https://doi.org/10.1070/RC2002v071n05ABEH000713.
108. Grishchenko V.K., Boiko V.P., Svistova E.I., Yatsimirskaya T.S., Valuev V.I., Dmitrieva T.S. Hydrogen-Peroxide-Initiated Polymerization of Isoprene in Alcohol Solutions. J. Appl. Polym. Sci. 1992. 46, no. 12: 2081–2087. https://doi.org/10.1002/app.1992.070461203.
109. Odian G. Principles of polymerization. 4th Ed., Singapore: John Wiley & Sons, 2004. https://doi.org/10.1002/047147875X.
110. Overend R., Paraskevopoulos G. Rates of OH Radical Reactions. 4. Reactions with Methanol, Ethanol, 1-Propanol, and 2-Propanol at 296 K. J. Am. Chem. Soc. 1978. 82, no. 12: 1329–1333. https://doi.org/10.1021/j100501a001
111. Walling C. The hydrogen peroxide decomposition. Acc. Chem. Res. 1975. 8: 125–131. https://doi.org/10.1021/ar50088a003.
112. Chapski G., Samuni A., Meisel D. The Reactions of Organic Radicals Formed by Some “Fenton-like” Reagents. J. Phys. Chem. 1971. 75, no. 21: 3271–3280. https://doi.org/10.1021/j100690a012.
113. Pat. 4518770 SShA, MKI S08F 2/16. Process for the preparation of polyhydroxybutadienes / S. E Kaplan, R. C. Frisk. – no. 574801; zayavl. 30.01.84; opubl. 21.05.85.