2020 (3) 2
https://doi.org/10.15407/polymerj.42.03.172
NATURAL-SYNTHETIC BLOCK COPOLYMERS OBTAINED USING OLIGOMERIC PHOTOINITIATORS
N.A. Busko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0001-9831-6748
V.K. Grishchenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: oligomer8@gmail.com
ORCID: 0000-0002-4951-936Х
A.V. Barantsova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0001-5781-2323
Ya.V. Kochetova,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0002-9770-6485
N.V. Gudzenko,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
E-mail: n.hudzenko@gmail.com
ORCID: 0000-0003-2363-4527
S.N. Octapyuk,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0001-8436-9080
P.M. Davyskyba,
Institute of Macromolecular Chemistry NAS of Ukraine, 48, Kharkivske shose, Kyiv, 02160, Ukraine
ORCID: 0000-0002-6735-7042
Polym. J., 2020, 42, no. 3: 172-182.
Section: Polymer synthesis.
Language: Ukrainian.
Abstract:
The aim of the work was to develop methods for the synthesis of natural-synthetic block copolymers (BСP) castor oil-(acrylate-vinylpyrrolidone) photoinduced radical polymerization and study of the properties. Synthesized oligomeric photoinitiators using 2-hydroxy-2-methyl-phenyl-propan-1-one (Darocur 1173) and 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgaсur 2959) with isophorondiisocyanate groups, which were grafted onto castor oil. BСPs were prepared based on oligomeric photoinitiators of castor oil at various molar ratios of oligomeric photoinitiator/acrylate/vinylpyrrolidone and BСP based on castor oil grafted with ethylene glycol monomethacrylic ester, vinylpyrrolidone monomer (VP) and monomeric fotoinitiator Darocur 1173. The structure of block copolymers is confirmed by IR spectroscopy. Changes in the hardness of coatings over time by a pendulum device in the process of producing block copolymers are investigated. It is shown that the greater the proportion of acrylate, the higher the hardness of the coating. The impact strength for BCPs obtained using an oligomeric initiator, the castor oil-Darocur is the same, regardless of the amount of acrylate. This is due to the main contribution to this index of castor oil, which, as an elastic matrix, inhibits cracking of coatings. All BCPs have good elasticity, probably due to the castor oil block. The study of the properties of the obtained natural-synthetic block copolymers of castor oil-(acrylate-vinylpyrrolidone) showed that all of them can be used as coatings, but the optimal coating is BCP with 20 % acrylate, since at good strength at impact, film elasticity when bending a metal plate and hardness, also has very good adhesion to metal.
Key words: block copolymers, oligomeric photoinitiators, сastor oil, acrylate, vinylpyrrolidone, radical photopolymerization.
REFERENCES
1. Noshay A., McGrath J. E. Block copolymers (Rus.). M: Mir, 1980: 478.
2. Alexandridis P., Lindman B. Amphiphilic Block Copolymers. Elsevier Science, 2000: 448. https://doi.org/10.1016/B978-0-444-82441-7.X5000-2.
3. Furukawa J., Takamori S., Yamashita S. Preparation of block copolymers with a macro-azonitrile as an initiator. Angew. Makromol. Chem., 1967. 1, no. 1: 92–104. https://doi.org/10.1002/apmc.1967.050010107
4. Ueda A., Nagai S. Macroinitiators including syntheses and applications of block copolymers derived therefrom. Macromolecular Design: Concept and Practice. Polymer Frontiers, Int. Inc., New York., 1994: 265–312.
5. Alli A., Hazer B., Baysal B. M. Determination of solubility parameters of cross-linked macromonomeric initiators based on polypropylene glycol. Eur. Polym. J., 2006, 42, no. 11: 3024–3031. https://doi.org/10.1016/j.eurpolymj.2006.07.012
6. Harikrishna R., Ponrathnam S., Rajan C.R. Photopolymerization kinetics of bis-aromatic based urethane acrylate macromonomers in the presence of reactive diluent. Progress in Organic Coatings, 2014, 77, no. 1: 225–231. https://doi.org/10.1016/j.porgcoat.2013.09.006.
7. Busko N., Grishchenko V., Barantsova A., Babkina N., Silchenko Yu., Kochetova Ya, Gudzenko N. Synthesis and study of the chemical structure of castor oil block copolymers based on oligomeric azo initiators. Polymer journal, 2017, 39, no. 3: 195–201.
8. Busko N. A., Grishchenko V. K., Shtompel V. I., Babkina N. V., Rosovitski V. F., Privalko V. P. Phase morphology and dynamic mechanical properties of model polyblock copolymers prepared from reactive oligomers. Polymers & Polymer Composites, 2001, 9, no. 8: 509–513. https://doi.org/10.1177/096739110100900803
9. Busko N., Grishchenko V., Barantsova A., Babkina N., Silchenko Yu.. Physico-chemical properties of block copolymers based on polyazoinitiator and butylmethacrylate. Kautshuk Gummi Kunstoffe, 2010, no. 1–2: 36–39.
10. Abbasia A., Nasefa M., Yahya W. Copolymerization of vegetable oils and bio-based monomers with elemental sulfur: A new promising route for bio-based polymers. Sustainable Chemistry and Pharmacy, 2019, 13: 1000158. https://doi.org/10.1016/j.scp.2019.100158.
11. Ataei S., Khorasani S., Neisiany R. Biofriendly vegetable oil healing agents used for developing self-healing coatings: A review. Progress in Organic Coatings, 2019, 129: 77–95. https://doi.org/10.1016/j.porgcoat.2019.01.012
12. Sharma Vinay, Kundu P.P. Addition polymers from natural oils. A review Progress in Polymer Science, 2006, 31, no. 11: 983–1008. https://doi.org/10.1016/j.porgcoat.2019.01.012.
13. Günera F. Seniha, Yağcıb Yusuf, Erciyesa A. Tuncer. Polymers from triglyceride oils. Progress in Polymer Science, 2006, 31, no. 7: 633–670. https://doi.org/10.1016/j.progpolymsci.2006.07.001
14. Miao, S., Wang, P., Su, Z., Zhang, S. Vegetable oil-based polymers as future polymeric biomaterials, Acta Biomaterialia, 2014, 10, no. 4: 1692–1704. http://dx.doi.org/10.1016/j.actbio.2013.08.040.
15. Karak N. Polyamides, polyolefins and other vegetable oil-based polymers. Properties, Processing and Applications: Woodhead Publishing Limited, 2012: 208–225. https://doi.org/10.1533/9780857097149.208
16. Maintaining organic compounds in photochemistry. Ed. G.O. Becker. L .: Chemistry (Rus.), 1976: 384.
17. Busko N. A., Grishchenko V. K., Kochetov D.P. Photoinitiated radical polymerization of a urethane-containing copolymer. Teoret. and experiment. Chemistry (Rus.), 1993, 29, no. 6: 539–544. https://doi.org/10.1007/BF00530621
18. Busko N., Grishchenko V., Barantsova A., Kochetova Ya, Gudzenko N. Synthesis and properties of silicone oligomeric photoinitiators. Polymer journal (Ukr.), 2019, 41, no 3: 179–189. https://doi.org/10.15407/polymerj.41.03.179
19. GOST 5233-89 Materialy` lakokrasochny`e. Metod opredeleniya tverdosti pokry`tij po mayatnikovomu priboru. M.: Izd-vo standartov, 1989: 6.
20. GOST 4765-73 Materialy` lakokrasochny`e. Metod opredeleniya prochnosti pri udare. M.: Izd-vo standartov, 1973: 9.
21. GOST 6806-73 Materialy` lakokrasochny`e. Metod opredeleniya e`lastichnosti plenki pri izgibe. M.: Izd-vo standartov, 1973: 5.
22. GOST 15140-78 Materialy` lakokrasochny`e. Metod opredeleniya adgezii. M.: Izd-vo standartov, 1978: 8.
23. GOST 19007-73 Materialy` lakokrasochny`e. Metod opredeoeniya vremeni i stepeni vy`sy`khaniya. M.: Izd-vo standartov, 1973: 5.
24. Silverstein R., Bassler G., Moril T. Spectrometric identification of organic compounds (Rus.). M: Mir, 1977: 590.
25. Semenovich G.M., Khramova T.S. Handbook of the physical chemistry of polymers. Kiev: Sciences. Dumka (Rus.). 1985, 3: 589.